pub struct Identity { /* private fields */ }
Expand description
Identity
struct is an abstraction of public & secret key related operations.
It is basically a wrapper of the keypair (which holds public & secret keys) and a context that will be used for signing.
Implementations§
source§impl Identity
impl Identity
sourcepub fn open_or_create<B: AsRef<Path>>(
base_directory: B,
) -> Result<Self, IdentityError>
pub fn open_or_create<B: AsRef<Path>>( base_directory: B, ) -> Result<Self, IdentityError>
Opens the existing identity, or creates a new one.
sourcepub fn open<B: AsRef<Path>>(
base_directory: B,
) -> Result<Option<Self>, IdentityError>
pub fn open<B: AsRef<Path>>( base_directory: B, ) -> Result<Option<Self>, IdentityError>
Opens the existing identity, returns Ok(None)
if it doesn’t exist.
sourcepub fn create<B: AsRef<Path>>(base_directory: B) -> Result<Self, IdentityError>
pub fn create<B: AsRef<Path>>(base_directory: B) -> Result<Self, IdentityError>
Creates new identity, overrides identity that might already exist.
sourcepub fn public_key(&self) -> &PublicKey
pub fn public_key(&self) -> &PublicKey
Returns the public key of the identity.
sourcepub fn secret_key(&self) -> &SecretKey
pub fn secret_key(&self) -> &SecretKey
Returns the secret key of the identity.
sourcepub fn sign_reward_hash(&self, header_hash: &[u8]) -> Signature
pub fn sign_reward_hash(&self, header_hash: &[u8]) -> Signature
Sign reward hash.
Methods from Deref<Target = Keypair>§
pub fn to_bytes(&self) -> [u8; 96]
pub fn to_bytes(&self) -> [u8; 96]
Serialize Keypair
to bytes.
§Returns
A byte array [u8; KEYPAIR_LENGTH]
consisting of first a
SecretKey
serialized canonically, and next the Ristterro
PublicKey
§Examples
use schnorrkel::{Keypair, KEYPAIR_LENGTH};
let keypair: Keypair = Keypair::generate();
let bytes: [u8; KEYPAIR_LENGTH] = keypair.to_bytes();
let keypair_too = Keypair::from_bytes(&bytes[..]).unwrap();
assert_eq!(&bytes[..], & keypair_too.to_bytes()[..]);
pub fn to_half_ed25519_bytes(&self) -> [u8; 96]
pub fn to_half_ed25519_bytes(&self) -> [u8; 96]
Serialize Keypair
to bytes with Ed25519 secret key format.
§Returns
A byte array [u8; KEYPAIR_LENGTH]
consisting of first a
SecretKey
serialized like Ed25519, and next the Ristterro
PublicKey
pub fn sign<T>(&self, t: T) -> Signaturewhere
T: SigningTranscript,
pub fn sign<T>(&self, t: T) -> Signaturewhere
T: SigningTranscript,
Sign a transcript with this keypair’s secret key.
Requires a SigningTranscript
, normally created from a
SigningContext
and a message. Returns a Schnorr signature.
§Examples
Internally, we manage signature transcripts using a 128 bit secure STROBE construction based on Keccak, which itself is extremely fast and secure. You might however influence performance or security by prehashing your message, like
use schnorrkel::{Signature,Keypair};
use rand::prelude::*; // ThreadRng,thread_rng
use sha3::Shake128;
use sha3::digest::{Update};
let mut csprng: ThreadRng = thread_rng();
let keypair: Keypair = Keypair::generate_with(&mut csprng);
let message: &[u8] = b"All I want is to pet all of the dogs.";
// Create a hash digest object and feed it the message:
let prehashed = Shake128::default().chain(message);
We require a “context” string for all signatures, which should be chosen judiciously for your project. It should represent the role the signature plays in your application. If you use the context in two purposes, and the same key, then a signature for one purpose can be substituted for the other.
let ctx = signing_context(b"My Signing Context");
let sig: Signature = keypair.sign(ctx.xof(prehashed));
pub fn sign_simple(&self, ctx: &[u8], msg: &[u8]) -> Signature
pub fn sign_simple(&self, ctx: &[u8], msg: &[u8]) -> Signature
Sign a message with this keypair’s secret key.
pub fn verify<T>(
&self,
t: T,
signature: &Signature,
) -> Result<(), SignatureError>where
T: SigningTranscript,
pub fn verify<T>(
&self,
t: T,
signature: &Signature,
) -> Result<(), SignatureError>where
T: SigningTranscript,
Verify a signature by keypair’s public key on a transcript.
Requires a SigningTranscript
, normally created from a
SigningContext
and a message, as well as the signature
to be verified.
§Examples
use schnorrkel::{Keypair,Signature,signing_context};
use rand::prelude::*; // ThreadRng,thread_rng
let mut csprng: ThreadRng = thread_rng();
let keypair: Keypair = Keypair::generate_with(&mut csprng);
let message: &[u8] = b"All I want is to pet all of the dogs.";
let ctx = signing_context(b"Some context string");
let sig: Signature = keypair.sign(ctx.bytes(message));
assert!( keypair.public.verify(ctx.bytes(message), &sig).is_ok() );
pub fn verify_simple(
&self,
ctx: &[u8],
msg: &[u8],
signature: &Signature,
) -> Result<(), SignatureError>
pub fn verify_simple( &self, ctx: &[u8], msg: &[u8], signature: &Signature, ) -> Result<(), SignatureError>
Verify a signature by keypair’s public key on a message.
pub fn sign_doublecheck<T>(&self, t: T) -> Result<Signature, SignatureError>where
T: SigningTranscript + Clone,
pub fn sign_doublecheck<T>(&self, t: T) -> Result<Signature, SignatureError>where
T: SigningTranscript + Clone,
Sign a message with this SecretKey
, but doublecheck the result.
pub fn sign_simple_doublecheck(
&self,
ctx: &[u8],
msg: &[u8],
) -> Result<Signature, SignatureError>
pub fn sign_simple_doublecheck( &self, ctx: &[u8], msg: &[u8], ) -> Result<Signature, SignatureError>
Sign a message with this SecretKey
, but doublecheck the result.
pub fn vrf_create_hash<T>(&self, t: T) -> VRFInOutwhere
T: VRFSigningTranscript,
pub fn vrf_create_hash<T>(&self, t: T) -> VRFInOutwhere
T: VRFSigningTranscript,
Evaluate the VRF on the given transcript.
pub fn dleq_proove<T>(
&self,
t: T,
p: &VRFInOut,
kusama: bool,
) -> (VRFProof, VRFProofBatchable)where
T: SigningTranscript,
pub fn dleq_proove<T>(
&self,
t: T,
p: &VRFInOut,
kusama: bool,
) -> (VRFProof, VRFProofBatchable)where
T: SigningTranscript,
Produce DLEQ proof.
We assume the VRFInOut
paramater has been computed correctly
by multiplying every input point by self.secret
, like by
using one of the vrf_create_*
methods on SecretKey
.
If so, we produce a proof that this multiplication was done correctly.
pub fn vrf_sign<T>(&self, t: T) -> (VRFInOut, VRFProof, VRFProofBatchable)where
T: VRFSigningTranscript,
pub fn vrf_sign<T>(&self, t: T) -> (VRFInOut, VRFProof, VRFProofBatchable)where
T: VRFSigningTranscript,
Run VRF on one single input transcript, producing the outpus and corresponding short proof.
There are schemes like Ouroboros Praos in which nodes evaluate
VRFs repeatedly until they win some contest. In these case,
you should probably use vrf_sign_n_check to gain access to the
VRFInOut
from vrf_create_hash
first, and then avoid computing
the proof whenever you do not win.
pub fn vrf_sign_extra<T, E>(
&self,
t: T,
extra: E,
) -> (VRFInOut, VRFProof, VRFProofBatchable)where
T: VRFSigningTranscript,
E: SigningTranscript,
pub fn vrf_sign_extra<T, E>(
&self,
t: T,
extra: E,
) -> (VRFInOut, VRFProof, VRFProofBatchable)where
T: VRFSigningTranscript,
E: SigningTranscript,
Run VRF on one single input transcript and an extra message transcript, producing the outpus and corresponding short proof.
pub fn vrf_sign_after_check<T, F>(
&self,
t: T,
check: F,
) -> Option<(VRFInOut, VRFProof, VRFProofBatchable)>
pub fn vrf_sign_after_check<T, F>( &self, t: T, check: F, ) -> Option<(VRFInOut, VRFProof, VRFProofBatchable)>
Run VRF on one single input transcript, producing the outpus and corresponding short proof only if the result first passes some check.
There are schemes like Ouroboros Praos in which nodes evaluate VRFs repeatedly until they win some contest. In these case, you might use this function to short circuit computing the full proof.
pub fn vrf_sign_extra_after_check<T, E, F>(
&self,
t: T,
check: F,
) -> Option<(VRFInOut, VRFProof, VRFProofBatchable)>
pub fn vrf_sign_extra_after_check<T, E, F>( &self, t: T, check: F, ) -> Option<(VRFInOut, VRFProof, VRFProofBatchable)>
Run VRF on one single input transcript, producing the outpus and corresponding short proof only if the result first passes some check, which itself returns an extra message transcript.
pub fn vrfs_sign<T, I>(
&self,
ts: I,
) -> (Box<[VRFInOut]>, VRFProof, VRFProofBatchable)where
T: VRFSigningTranscript,
I: IntoIterator<Item = T>,
pub fn vrfs_sign<T, I>(
&self,
ts: I,
) -> (Box<[VRFInOut]>, VRFProof, VRFProofBatchable)where
T: VRFSigningTranscript,
I: IntoIterator<Item = T>,
Run VRF on several input transcripts, producing their outputs and a common short proof.
We merge the VRF outputs using variable time arithmetic, so if even the hash of the message being signed is sensitive then you might reimplement some constant time variant.
pub fn vrfs_sign_extra<T, E, I>(
&self,
ts: I,
extra: E,
) -> (Box<[VRFInOut]>, VRFProof, VRFProofBatchable)where
T: VRFSigningTranscript,
E: SigningTranscript,
I: IntoIterator<Item = T>,
pub fn vrfs_sign_extra<T, E, I>(
&self,
ts: I,
extra: E,
) -> (Box<[VRFInOut]>, VRFProof, VRFProofBatchable)where
T: VRFSigningTranscript,
E: SigningTranscript,
I: IntoIterator<Item = T>,
Run VRF on several input transcripts and an extra message transcript, producing their outputs and a common short proof.
We merge the VRF outputs using variable time arithmetic, so if even the hash of the message being signed is sensitive then you might reimplement some constant time variant.
pub fn hard_derive_mini_secret_key<B>(
&self,
cc: Option<ChainCode>,
i: B,
) -> (MiniSecretKey, ChainCode)
pub fn hard_derive_mini_secret_key<B>( &self, cc: Option<ChainCode>, i: B, ) -> (MiniSecretKey, ChainCode)
Vaguely BIP32-like “hard” derivation of a MiniSecretKey
from a SecretKey
We do not envision any “good reasons” why these “hard”
derivations should ever be used after the soft Derivation
trait. We similarly do not believe hard derivations
make any sense for ChainCode
s or ExtendedKey
s types.
Yet, some existing BIP32 workflows might do these things,
due to BIP32’s de facto standardization and poor design.
In consequence, we provide this method to do “hard” derivations
in a way that should work with all BIP32 workflows and any
permissible mutations of SecretKey
. This means only that
we hash the SecretKey
’s scalar, but not its nonce because
the secret key remains valid if the nonce is changed.
pub fn derive_secret_key<T>(
&self,
t: T,
cc: ChainCode,
) -> (SecretKey, ChainCode)where
T: SigningTranscript,
pub fn derive_secret_key<T>(
&self,
t: T,
cc: ChainCode,
) -> (SecretKey, ChainCode)where
T: SigningTranscript,
Derive a secret key and new chain code from a key pair and chain code.
We expect the trait methods of Keypair as Derivation
to be
more useful since signing anything requires the public key too.
pub fn issue_adaptor_cert<T>(
&self,
t: T,
seed_public_key: &PublicKey,
) -> AdaptorCertSecretwhere
T: SigningTranscript,
pub fn issue_adaptor_cert<T>(
&self,
t: T,
seed_public_key: &PublicKey,
) -> AdaptorCertSecretwhere
T: SigningTranscript,
Issue an Adaptor implicit certificate
Aside from the issuing Keypair
supplied as self
, you provide both
(1) a SigningTranscript
called t
that incorporates both the context
and the certificate requester’s identity, and
(2) the seed_public_key
supplied by the certificate recipient
in their certificate request.
We return an AdaptorCertSecret
which the issuer sent to the
certificate requester, ans from which the certificate requester
derives their certified key pair.
pub fn issue_self_adaptor_cert<T>(&self, t: T) -> (AdaptorCertPublic, SecretKey)where
T: SigningTranscript + Clone,
pub fn issue_self_adaptor_cert<T>(&self, t: T) -> (AdaptorCertPublic, SecretKey)where
T: SigningTranscript + Clone,
Issue an Adaptor Implicit Certificate for yourself
We can issue an implicit certificate to ourselves if we merely want to certify an associated public key. We should prefer this option over “hierarchical deterministic” key derivation because compromising the resulting secret key does not compromise the issuer’s secret key.
In this case, we avoid the entire interactive protocol described
by issue_adaptor_cert
and accept_adaptor_cert
by hiding it an all
management of the ephemeral Keypair
inside this function.
Aside from the issuing secret key supplied as self
, you provide
only a digest h
that incorporates any context and metadata
pertaining to the issued key.
pub fn musig<'k, T>(&'k self, t: T) -> MuSig<T, CommitStage<&'k Keypair>>where
T: SigningTranscript + Clone,
👎Deprecated since 0.11.0: This module will be replaced in the future
pub fn musig<'k, T>(&'k self, t: T) -> MuSig<T, CommitStage<&'k Keypair>>where
T: SigningTranscript + Clone,
Initialize a multi-signature aka cosignature protocol run.
We borrow the keypair here to discurage keeping too many
copies of the private key, but the MuSig::new
method
can create an owned version, or use Rc
or Arc
.
Trait Implementations§
Auto Trait Implementations§
impl Freeze for Identity
impl RefUnwindSafe for Identity
impl Send for Identity
impl Sync for Identity
impl Unpin for Identity
impl UnwindSafe for Identity
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
source§unsafe fn clone_to_uninit(&self, dst: *mut T)
unsafe fn clone_to_uninit(&self, dst: *mut T)
clone_to_uninit
)§impl<T> Conv for T
impl<T> Conv for T
§impl<T> FmtForward for T
impl<T> FmtForward for T
§fn fmt_binary(self) -> FmtBinary<Self>where
Self: Binary,
fn fmt_binary(self) -> FmtBinary<Self>where
Self: Binary,
self
to use its Binary
implementation when Debug
-formatted.§fn fmt_display(self) -> FmtDisplay<Self>where
Self: Display,
fn fmt_display(self) -> FmtDisplay<Self>where
Self: Display,
self
to use its Display
implementation when
Debug
-formatted.§fn fmt_lower_exp(self) -> FmtLowerExp<Self>where
Self: LowerExp,
fn fmt_lower_exp(self) -> FmtLowerExp<Self>where
Self: LowerExp,
self
to use its LowerExp
implementation when
Debug
-formatted.§fn fmt_lower_hex(self) -> FmtLowerHex<Self>where
Self: LowerHex,
fn fmt_lower_hex(self) -> FmtLowerHex<Self>where
Self: LowerHex,
self
to use its LowerHex
implementation when
Debug
-formatted.§fn fmt_octal(self) -> FmtOctal<Self>where
Self: Octal,
fn fmt_octal(self) -> FmtOctal<Self>where
Self: Octal,
self
to use its Octal
implementation when Debug
-formatted.§fn fmt_pointer(self) -> FmtPointer<Self>where
Self: Pointer,
fn fmt_pointer(self) -> FmtPointer<Self>where
Self: Pointer,
self
to use its Pointer
implementation when
Debug
-formatted.§fn fmt_upper_exp(self) -> FmtUpperExp<Self>where
Self: UpperExp,
fn fmt_upper_exp(self) -> FmtUpperExp<Self>where
Self: UpperExp,
self
to use its UpperExp
implementation when
Debug
-formatted.§fn fmt_upper_hex(self) -> FmtUpperHex<Self>where
Self: UpperHex,
fn fmt_upper_hex(self) -> FmtUpperHex<Self>where
Self: UpperHex,
self
to use its UpperHex
implementation when
Debug
-formatted.§fn fmt_list(self) -> FmtList<Self>where
&'a Self: for<'a> IntoIterator,
fn fmt_list(self) -> FmtList<Self>where
&'a Self: for<'a> IntoIterator,
§impl<T> Instrument for T
impl<T> Instrument for T
§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
source§impl<T> IntoEither for T
impl<T> IntoEither for T
source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moresource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read more§impl<T> Pipe for Twhere
T: ?Sized,
impl<T> Pipe for Twhere
T: ?Sized,
§fn pipe<R>(self, func: impl FnOnce(Self) -> R) -> Rwhere
Self: Sized,
fn pipe<R>(self, func: impl FnOnce(Self) -> R) -> Rwhere
Self: Sized,
§fn pipe_ref<'a, R>(&'a self, func: impl FnOnce(&'a Self) -> R) -> Rwhere
R: 'a,
fn pipe_ref<'a, R>(&'a self, func: impl FnOnce(&'a Self) -> R) -> Rwhere
R: 'a,
self
and passes that borrow into the pipe function. Read more§fn pipe_ref_mut<'a, R>(&'a mut self, func: impl FnOnce(&'a mut Self) -> R) -> Rwhere
R: 'a,
fn pipe_ref_mut<'a, R>(&'a mut self, func: impl FnOnce(&'a mut Self) -> R) -> Rwhere
R: 'a,
self
and passes that borrow into the pipe function. Read more§fn pipe_borrow<'a, B, R>(&'a self, func: impl FnOnce(&'a B) -> R) -> R
fn pipe_borrow<'a, B, R>(&'a self, func: impl FnOnce(&'a B) -> R) -> R
§fn pipe_borrow_mut<'a, B, R>(
&'a mut self,
func: impl FnOnce(&'a mut B) -> R,
) -> R
fn pipe_borrow_mut<'a, B, R>( &'a mut self, func: impl FnOnce(&'a mut B) -> R, ) -> R
§fn pipe_as_ref<'a, U, R>(&'a self, func: impl FnOnce(&'a U) -> R) -> R
fn pipe_as_ref<'a, U, R>(&'a self, func: impl FnOnce(&'a U) -> R) -> R
self
, then passes self.as_ref()
into the pipe function.§fn pipe_as_mut<'a, U, R>(&'a mut self, func: impl FnOnce(&'a mut U) -> R) -> R
fn pipe_as_mut<'a, U, R>(&'a mut self, func: impl FnOnce(&'a mut U) -> R) -> R
self
, then passes self.as_mut()
into the pipe
function.§fn pipe_deref<'a, T, R>(&'a self, func: impl FnOnce(&'a T) -> R) -> R
fn pipe_deref<'a, T, R>(&'a self, func: impl FnOnce(&'a T) -> R) -> R
self
, then passes self.deref()
into the pipe function.§impl<T> Pointable for T
impl<T> Pointable for T
§impl<T> Tap for T
impl<T> Tap for T
§fn tap_borrow<B>(self, func: impl FnOnce(&B)) -> Self
fn tap_borrow<B>(self, func: impl FnOnce(&B)) -> Self
Borrow<B>
of a value. Read more§fn tap_borrow_mut<B>(self, func: impl FnOnce(&mut B)) -> Self
fn tap_borrow_mut<B>(self, func: impl FnOnce(&mut B)) -> Self
BorrowMut<B>
of a value. Read more§fn tap_ref<R>(self, func: impl FnOnce(&R)) -> Self
fn tap_ref<R>(self, func: impl FnOnce(&R)) -> Self
AsRef<R>
view of a value. Read more§fn tap_ref_mut<R>(self, func: impl FnOnce(&mut R)) -> Self
fn tap_ref_mut<R>(self, func: impl FnOnce(&mut R)) -> Self
AsMut<R>
view of a value. Read more§fn tap_deref<T>(self, func: impl FnOnce(&T)) -> Self
fn tap_deref<T>(self, func: impl FnOnce(&T)) -> Self
Deref::Target
of a value. Read more§fn tap_deref_mut<T>(self, func: impl FnOnce(&mut T)) -> Self
fn tap_deref_mut<T>(self, func: impl FnOnce(&mut T)) -> Self
Deref::Target
of a value. Read more§fn tap_dbg(self, func: impl FnOnce(&Self)) -> Self
fn tap_dbg(self, func: impl FnOnce(&Self)) -> Self
.tap()
only in debug builds, and is erased in release builds.§fn tap_mut_dbg(self, func: impl FnOnce(&mut Self)) -> Self
fn tap_mut_dbg(self, func: impl FnOnce(&mut Self)) -> Self
.tap_mut()
only in debug builds, and is erased in release
builds.§fn tap_borrow_dbg<B>(self, func: impl FnOnce(&B)) -> Self
fn tap_borrow_dbg<B>(self, func: impl FnOnce(&B)) -> Self
.tap_borrow()
only in debug builds, and is erased in release
builds.§fn tap_borrow_mut_dbg<B>(self, func: impl FnOnce(&mut B)) -> Self
fn tap_borrow_mut_dbg<B>(self, func: impl FnOnce(&mut B)) -> Self
.tap_borrow_mut()
only in debug builds, and is erased in release
builds.§fn tap_ref_dbg<R>(self, func: impl FnOnce(&R)) -> Self
fn tap_ref_dbg<R>(self, func: impl FnOnce(&R)) -> Self
.tap_ref()
only in debug builds, and is erased in release
builds.§fn tap_ref_mut_dbg<R>(self, func: impl FnOnce(&mut R)) -> Self
fn tap_ref_mut_dbg<R>(self, func: impl FnOnce(&mut R)) -> Self
.tap_ref_mut()
only in debug builds, and is erased in release
builds.§fn tap_deref_dbg<T>(self, func: impl FnOnce(&T)) -> Self
fn tap_deref_dbg<T>(self, func: impl FnOnce(&T)) -> Self
.tap_deref()
only in debug builds, and is erased in release
builds.