subspace_verification/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
//! Verification primitives for Subspace.
#![forbid(unsafe_code)]
#![warn(rust_2018_idioms, missing_debug_implementations, missing_docs)]
#![feature(array_chunks, portable_simd)]
// `generic_const_exprs` is an incomplete feature
#![allow(incomplete_features)]
// TODO: This feature is not actually used in this crate, but is added as a workaround for
//  https://github.com/rust-lang/rust/issues/133199
#![feature(generic_const_exprs)]
#![cfg_attr(not(feature = "std"), no_std)]

#[cfg(not(feature = "std"))]
extern crate alloc;

#[cfg(not(feature = "std"))]
use alloc::string::String;
#[cfg(all(feature = "kzg", not(feature = "std")))]
use alloc::vec::Vec;
use codec::{Decode, Encode, MaxEncodedLen};
use core::mem;
#[cfg(feature = "kzg")]
use core::simd::Simd;
use schnorrkel::context::SigningContext;
use schnorrkel::SignatureError;
#[cfg(feature = "kzg")]
use subspace_core_primitives::hashes::blake3_254_hash_to_scalar;
use subspace_core_primitives::hashes::{blake3_hash_list, blake3_hash_with_key, Blake3Hash};
#[cfg(feature = "kzg")]
use subspace_core_primitives::pieces::{PieceArray, Record, RecordWitness};
use subspace_core_primitives::pot::PotOutput;
#[cfg(feature = "kzg")]
use subspace_core_primitives::sectors::SectorId;
use subspace_core_primitives::sectors::SectorSlotChallenge;
#[cfg(feature = "kzg")]
use subspace_core_primitives::segments::ArchivedHistorySegment;
use subspace_core_primitives::segments::{HistorySize, SegmentCommitment};
#[cfg(feature = "kzg")]
use subspace_core_primitives::solutions::Solution;
use subspace_core_primitives::solutions::{RewardSignature, SolutionRange};
use subspace_core_primitives::{BlockNumber, BlockWeight, PublicKey, ScalarBytes, SlotNumber};
#[cfg(feature = "kzg")]
use subspace_kzg::{Commitment, Kzg, Scalar, Witness};
#[cfg(feature = "kzg")]
use subspace_proof_of_space::Table;

/// Errors encountered by the Subspace consensus primitives.
#[derive(Debug, Eq, PartialEq, thiserror::Error)]
pub enum Error {
    /// Invalid piece offset
    #[error("Piece verification failed")]
    InvalidPieceOffset {
        /// Index of the piece that failed verification
        piece_offset: u16,
        /// How many pieces one sector is supposed to contain (max)
        max_pieces_in_sector: u16,
    },
    /// Sector expired
    #[error("Sector expired")]
    SectorExpired {
        /// Expiration history size
        expiration_history_size: HistorySize,
        /// Current history size
        current_history_size: HistorySize,
    },
    /// Piece verification failed
    #[error("Piece verification failed")]
    InvalidPiece,
    /// Solution is outside of challenge range
    #[error(
        "Solution distance {solution_distance} is outside of solution range \
        {half_solution_range} (half of actual solution range)"
    )]
    OutsideSolutionRange {
        /// Half of solution range
        half_solution_range: SolutionRange,
        /// Solution distance
        solution_distance: SolutionRange,
    },
    /// Invalid proof of space
    #[error("Invalid proof of space")]
    InvalidProofOfSpace,
    /// Invalid audit chunk offset
    #[error("Invalid audit chunk offset")]
    InvalidAuditChunkOffset,
    /// Invalid chunk
    #[error("Invalid chunk: {0}")]
    InvalidChunk(String),
    /// Invalid chunk witness
    #[error("Invalid chunk witness")]
    InvalidChunkWitness,
    /// Invalid history size
    #[error("Invalid history size")]
    InvalidHistorySize,
}

/// Check the reward signature validity.
pub fn check_reward_signature(
    hash: &[u8],
    signature: &RewardSignature,
    public_key: &PublicKey,
    reward_signing_context: &SigningContext,
) -> Result<(), SignatureError> {
    let public_key = schnorrkel::PublicKey::from_bytes(public_key.as_ref())?;
    let signature = schnorrkel::Signature::from_bytes(signature.as_ref())?;
    public_key.verify(reward_signing_context.bytes(hash), &signature)
}

/// Calculates solution distance for given parameters, is used as a primitive to check whether
/// solution distance is within solution range (see [`is_within_solution_range()`]).
fn calculate_solution_distance(
    global_challenge: &Blake3Hash,
    chunk: &[u8; 32],
    sector_slot_challenge: &SectorSlotChallenge,
) -> SolutionRange {
    let audit_chunk = blake3_hash_with_key(sector_slot_challenge, chunk);
    let audit_chunk_as_solution_range: SolutionRange = SolutionRange::from_le_bytes(
        *audit_chunk
            .array_chunks::<{ mem::size_of::<SolutionRange>() }>()
            .next()
            .expect("Solution range is smaller in size than global challenge; qed"),
    );
    let global_challenge_as_solution_range: SolutionRange = SolutionRange::from_le_bytes(
        *global_challenge
            .array_chunks::<{ mem::size_of::<SolutionRange>() }>()
            .next()
            .expect("Solution range is smaller in size than global challenge; qed"),
    );
    subspace_core_primitives::solutions::bidirectional_distance(
        &global_challenge_as_solution_range,
        &audit_chunk_as_solution_range,
    )
}

/// Returns `Some(solution_distance)` if solution distance is within the solution range for provided
/// parameters.
pub fn is_within_solution_range(
    global_challenge: &Blake3Hash,
    chunk: &[u8; 32],
    sector_slot_challenge: &SectorSlotChallenge,
    solution_range: SolutionRange,
) -> Option<SolutionRange> {
    let solution_distance =
        calculate_solution_distance(global_challenge, chunk, sector_slot_challenge);
    (solution_distance <= solution_range / 2).then_some(solution_distance)
}

/// Parameters for checking piece validity
#[derive(Debug, Clone, Encode, Decode, MaxEncodedLen)]
pub struct PieceCheckParams {
    /// How many pieces one sector is supposed to contain (max)
    pub max_pieces_in_sector: u16,
    /// Segment commitment of segment to which piece belongs
    pub segment_commitment: SegmentCommitment,
    /// Number of latest archived segments that are considered "recent history"
    pub recent_segments: HistorySize,
    /// Fraction of pieces from the "recent history" (`recent_segments`) in each sector
    pub recent_history_fraction: (HistorySize, HistorySize),
    /// Minimum lifetime of a plotted sector, measured in archived segment
    pub min_sector_lifetime: HistorySize,
    /// Current size of the history
    pub current_history_size: HistorySize,
    /// Segment commitment at `min_sector_lifetime` from sector creation (if exists)
    pub sector_expiration_check_segment_commitment: Option<SegmentCommitment>,
}

/// Parameters for solution verification
#[derive(Debug, Clone, Encode, Decode, MaxEncodedLen)]
pub struct VerifySolutionParams {
    /// Proof of time for which solution is built
    pub proof_of_time: PotOutput,
    /// Solution range
    pub solution_range: SolutionRange,
    /// Parameters for checking piece validity.
    ///
    /// If `None`, piece validity check will be skipped.
    pub piece_check_params: Option<PieceCheckParams>,
}

/// Calculate weight derived from provided solution range
pub fn calculate_block_weight(solution_range: SolutionRange) -> BlockWeight {
    BlockWeight::from(SolutionRange::MAX - solution_range)
}

/// Verify whether solution is valid, returns solution distance that is `<= solution_range/2` on
/// success.
#[cfg(feature = "kzg")]
pub fn verify_solution<'a, PosTable, RewardAddress>(
    solution: &'a Solution<RewardAddress>,
    slot: SlotNumber,
    params: &'a VerifySolutionParams,
    kzg: &'a Kzg,
) -> Result<SolutionRange, Error>
where
    PosTable: Table,
{
    let VerifySolutionParams {
        proof_of_time,
        solution_range,
        piece_check_params,
    } = params;

    let sector_id = SectorId::new(
        solution.public_key.hash(),
        solution.sector_index,
        solution.history_size,
    );

    let global_randomness = proof_of_time.derive_global_randomness();
    let global_challenge = global_randomness.derive_global_challenge(slot);
    let sector_slot_challenge = sector_id.derive_sector_slot_challenge(&global_challenge);
    let s_bucket_audit_index = sector_slot_challenge.s_bucket_audit_index();

    // Check that proof of space is valid
    if !PosTable::is_proof_valid(
        &sector_id.derive_evaluation_seed(solution.piece_offset),
        s_bucket_audit_index.into(),
        &solution.proof_of_space,
    ) {
        return Err(Error::InvalidProofOfSpace);
    };

    let masked_chunk =
        (Simd::from(*solution.chunk) ^ Simd::from(*solution.proof_of_space.hash())).to_array();

    let solution_distance =
        calculate_solution_distance(&global_challenge, &masked_chunk, &sector_slot_challenge);

    // Check that solution is within solution range
    if solution_distance > solution_range / 2 {
        return Err(Error::OutsideSolutionRange {
            half_solution_range: solution_range / 2,
            solution_distance,
        });
    }

    // Check that chunk belongs to the record
    if !kzg.verify(
        &Commitment::try_from(solution.record_commitment)
            .map_err(|_error| Error::InvalidChunkWitness)?,
        Record::NUM_S_BUCKETS,
        s_bucket_audit_index.into(),
        &Scalar::try_from(solution.chunk).map_err(Error::InvalidChunk)?,
        &Witness::try_from(solution.chunk_witness).map_err(|_error| Error::InvalidChunkWitness)?,
    ) {
        return Err(Error::InvalidChunkWitness);
    }

    if let Some(PieceCheckParams {
        max_pieces_in_sector,
        segment_commitment,
        recent_segments,
        recent_history_fraction,
        min_sector_lifetime,
        current_history_size,
        sector_expiration_check_segment_commitment,
    }) = piece_check_params
    {
        if u16::from(solution.piece_offset) >= *max_pieces_in_sector {
            return Err(Error::InvalidPieceOffset {
                piece_offset: u16::from(solution.piece_offset),
                max_pieces_in_sector: *max_pieces_in_sector,
            });
        }
        if let Some(sector_expiration_check_segment_commitment) =
            sector_expiration_check_segment_commitment
        {
            let expiration_history_size = match sector_id.derive_expiration_history_size(
                solution.history_size,
                sector_expiration_check_segment_commitment,
                *min_sector_lifetime,
            ) {
                Some(expiration_history_size) => expiration_history_size,
                None => {
                    return Err(Error::InvalidHistorySize);
                }
            };

            if expiration_history_size <= *current_history_size {
                return Err(Error::SectorExpired {
                    expiration_history_size,
                    current_history_size: *current_history_size,
                });
            }
        }

        let position = sector_id
            .derive_piece_index(
                solution.piece_offset,
                solution.history_size,
                *max_pieces_in_sector,
                *recent_segments,
                *recent_history_fraction,
            )
            .position();

        // Check that piece is part of the blockchain history
        if !is_record_commitment_hash_valid(
            kzg,
            &Scalar::try_from(blake3_254_hash_to_scalar(
                solution.record_commitment.as_ref(),
            ))
            .expect("Create correctly by dedicated hash function; qed"),
            segment_commitment,
            &solution.record_witness,
            position,
        ) {
            return Err(Error::InvalidPiece);
        }
    }

    Ok(solution_distance)
}

/// Validate witness embedded within a piece produced by archiver
#[cfg(feature = "kzg")]
pub fn is_piece_valid(
    kzg: &Kzg,
    piece: &PieceArray,
    segment_commitment: &SegmentCommitment,
    position: u32,
) -> bool {
    let (record, commitment, witness) = piece.split();
    let witness = match Witness::try_from_bytes(witness) {
        Ok(witness) => witness,
        _ => {
            return false;
        }
    };

    let mut scalars = Vec::with_capacity(record.len().next_power_of_two());

    for record_chunk in record.iter() {
        match Scalar::try_from(record_chunk) {
            Ok(scalar) => {
                scalars.push(scalar);
            }
            _ => {
                return false;
            }
        }
    }

    // Number of scalars for KZG must be a power of two elements
    scalars.resize(scalars.capacity(), Scalar::default());

    let polynomial = match kzg.poly(&scalars) {
        Ok(polynomial) => polynomial,
        _ => {
            return false;
        }
    };

    if kzg
        .commit(&polynomial)
        .map(|commitment| commitment.to_bytes())
        .as_ref()
        != Ok(commitment)
    {
        return false;
    }

    let Ok(segment_commitment) = Commitment::try_from(segment_commitment) else {
        return false;
    };

    let commitment_hash = Scalar::try_from(blake3_254_hash_to_scalar(commitment.as_ref()))
        .expect("Create correctly by dedicated hash function; qed");

    kzg.verify(
        &segment_commitment,
        ArchivedHistorySegment::NUM_PIECES,
        position,
        &commitment_hash,
        &witness,
    )
}

/// Validate witness for record commitment hash produced by archiver
#[cfg(feature = "kzg")]
pub fn is_record_commitment_hash_valid(
    kzg: &Kzg,
    record_commitment_hash: &Scalar,
    commitment: &SegmentCommitment,
    witness: &RecordWitness,
    position: u32,
) -> bool {
    let Ok(commitment) = Commitment::try_from(commitment) else {
        return false;
    };
    let Ok(witness) = Witness::try_from(witness) else {
        return false;
    };

    kzg.verify(
        &commitment,
        ArchivedHistorySegment::NUM_PIECES,
        position,
        record_commitment_hash,
        &witness,
    )
}

/// Derive proof of time entropy from chunk and proof of time for injection purposes.
#[inline]
pub fn derive_pot_entropy(chunk: &ScalarBytes, proof_of_time: PotOutput) -> Blake3Hash {
    blake3_hash_list(&[chunk.as_ref(), proof_of_time.as_ref()])
}

/// Derives next solution range based on the total era slots and slot probability
pub fn derive_next_solution_range(
    start_slot: SlotNumber,
    current_slot: SlotNumber,
    slot_probability: (u64, u64),
    current_solution_range: SolutionRange,
    era_duration: BlockNumber,
) -> u64 {
    // calculate total slots within this era
    let era_slot_count = current_slot - start_slot;

    // Now we need to re-calculate solution range. The idea here is to keep block production at
    // the same pace while space pledged on the network changes. For this we adjust previous
    // solution range according to actual and expected number of blocks per era.

    // Below is code analogous to the following, but without using floats:
    // ```rust
    // let actual_slots_per_block = era_slot_count as f64 / era_duration as f64;
    // let expected_slots_per_block =
    //     slot_probability.1 as f64 / slot_probability.0 as f64;
    // let adjustment_factor =
    //     (actual_slots_per_block / expected_slots_per_block).clamp(0.25, 4.0);
    //
    // next_solution_range =
    //     (solution_ranges.current as f64 * adjustment_factor).round() as u64;
    // ```
    u64::try_from(
        u128::from(current_solution_range)
            .saturating_mul(u128::from(era_slot_count))
            .saturating_mul(u128::from(slot_probability.0))
            / u128::from(era_duration)
            / u128::from(slot_probability.1),
    )
    .unwrap_or(u64::MAX)
    .clamp(
        current_solution_range / 4,
        current_solution_range.saturating_mul(4),
    )
}