subspace_proof_of_space/chiapos/
tables.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
#[cfg(test)]
mod tests;

#[cfg(not(feature = "std"))]
extern crate alloc;

use crate::chiapos::table::types::{Metadata, Position, X, Y};
pub use crate::chiapos::table::TablesCache;
use crate::chiapos::table::{
    compute_f1, compute_fn, has_match, metadata_size_bytes, partial_y, Table,
    COMPUTE_F1_SIMD_FACTOR,
};
use crate::chiapos::utils::EvaluatableUsize;
use crate::chiapos::{Challenge, Quality, Seed};
#[cfg(not(feature = "std"))]
use alloc::vec::Vec;
use core::mem;
use sha2::{Digest, Sha256};

/// Pick position in `table_number` based on challenge bits
const fn pick_position(
    [left_position, right_position]: [Position; 2],
    last_5_challenge_bits: u8,
    table_number: u8,
) -> Position {
    if ((last_5_challenge_bits >> (table_number - 2)) & 1) == 0 {
        left_position
    } else {
        right_position
    }
}

/// Collection of Chia tables
#[derive(Debug)]
pub(super) struct TablesGeneric<const K: u8>
where
    EvaluatableUsize<{ metadata_size_bytes(K, 1) }>: Sized,
    EvaluatableUsize<{ metadata_size_bytes(K, 2) }>: Sized,
    EvaluatableUsize<{ metadata_size_bytes(K, 3) }>: Sized,
    EvaluatableUsize<{ metadata_size_bytes(K, 4) }>: Sized,
    EvaluatableUsize<{ metadata_size_bytes(K, 5) }>: Sized,
    EvaluatableUsize<{ metadata_size_bytes(K, 6) }>: Sized,
    EvaluatableUsize<{ metadata_size_bytes(K, 7) }>: Sized,
{
    table_1: Table<K, 1>,
    table_2: Table<K, 2>,
    table_3: Table<K, 3>,
    table_4: Table<K, 4>,
    table_5: Table<K, 5>,
    table_6: Table<K, 6>,
    table_7: Table<K, 7>,
}

impl<const K: u8> TablesGeneric<K>
where
    EvaluatableUsize<{ metadata_size_bytes(K, 1) }>: Sized,
    EvaluatableUsize<{ metadata_size_bytes(K, 2) }>: Sized,
    EvaluatableUsize<{ metadata_size_bytes(K, 3) }>: Sized,
    EvaluatableUsize<{ metadata_size_bytes(K, 4) }>: Sized,
    EvaluatableUsize<{ metadata_size_bytes(K, 5) }>: Sized,
    EvaluatableUsize<{ metadata_size_bytes(K, 6) }>: Sized,
    EvaluatableUsize<{ metadata_size_bytes(K, 7) }>: Sized,
    EvaluatableUsize<{ K as usize * COMPUTE_F1_SIMD_FACTOR / u8::BITS as usize }>: Sized,
    EvaluatableUsize<{ 64 * K as usize / 8 }>: Sized,
{
    /// Create Chia proof of space tables. There also exists [`Self::create_parallel()`] that trades
    /// CPU efficiency and memory usage for lower latency.
    pub(super) fn create(seed: Seed, cache: &mut TablesCache<K>) -> Self {
        let table_1 = Table::<K, 1>::create(seed);
        let table_2 = Table::<K, 2>::create(&table_1, cache);
        let table_3 = Table::<K, 3>::create(&table_2, cache);
        let table_4 = Table::<K, 4>::create(&table_3, cache);
        let table_5 = Table::<K, 5>::create(&table_4, cache);
        let table_6 = Table::<K, 6>::create(&table_5, cache);
        let table_7 = Table::<K, 7>::create(&table_6, cache);

        Self {
            table_1,
            table_2,
            table_3,
            table_4,
            table_5,
            table_6,
            table_7,
        }
    }

    /// Almost the same as [`Self::create()`], but uses parallelism internally for better
    /// performance (though not efficiency of CPU and memory usage), if you create multiple tables
    /// in parallel, prefer [`Self::create()`] for better overall performance.
    #[cfg(any(feature = "parallel", test))]
    pub(super) fn create_parallel(seed: Seed, cache: &mut TablesCache<K>) -> Self {
        let table_1 = Table::<K, 1>::create_parallel(seed);
        let table_2 = Table::<K, 2>::create_parallel(&table_1, cache);
        let table_3 = Table::<K, 3>::create_parallel(&table_2, cache);
        let table_4 = Table::<K, 4>::create_parallel(&table_3, cache);
        let table_5 = Table::<K, 5>::create_parallel(&table_4, cache);
        let table_6 = Table::<K, 6>::create_parallel(&table_5, cache);
        let table_7 = Table::<K, 7>::create_parallel(&table_6, cache);

        Self {
            table_1,
            table_2,
            table_3,
            table_4,
            table_5,
            table_6,
            table_7,
        }
    }

    /// Find proof of space quality for given challenge.
    pub(super) fn find_quality<'a>(
        &'a self,
        challenge: &'a Challenge,
    ) -> impl Iterator<Item = Quality> + 'a {
        let last_5_challenge_bits = challenge[challenge.len() - 1] & 0b00011111;

        let ys = self.table_7.ys();
        // We take advantage of the fact that entries are sorted by `y` (as big-endian numbers) to
        // quickly seek to desired offset
        let first_k_challenge_bits = u32::from_be_bytes(
            challenge[..mem::size_of::<u32>()]
                .try_into()
                .expect("Challenge is known to statically have enough bytes; qed"),
        ) >> (u32::BITS as usize - usize::from(K));
        let mut first_matching_element = ys
            .binary_search_by(|&y| y.first_k_bits::<K>().cmp(&first_k_challenge_bits))
            .unwrap_or_else(|insert| insert);

        // We only compare first K bits above, which is why `binary_search_by` is not guaranteed to
        // find the very first match in case there are multiple
        for index in (0..first_matching_element).rev() {
            if ys[index].first_k_bits::<K>() == first_k_challenge_bits {
                first_matching_element = index;
            } else {
                break;
            }
        }

        // Iterate just over elements that are matching `first_k_challenge_bits` prefix
        ys[first_matching_element..]
            .iter()
            .take_while(move |&&y| {
                // Check if first K bits of `y` match
                y.first_k_bits::<K>() == first_k_challenge_bits
            })
            .zip(Position::from(first_matching_element as u32)..)
            .map(move |(_y, position)| {
                let positions = self
                    .table_7
                    .position(position)
                    .expect("Internally generated pointers must be correct; qed");
                let positions = self
                    .table_6
                    .position(pick_position(positions, last_5_challenge_bits, 6))
                    .expect("Internally generated pointers must be correct; qed");
                let positions = self
                    .table_5
                    .position(pick_position(positions, last_5_challenge_bits, 5))
                    .expect("Internally generated pointers must be correct; qed");
                let positions = self
                    .table_4
                    .position(pick_position(positions, last_5_challenge_bits, 4))
                    .expect("Internally generated pointers must be correct; qed");
                let positions = self
                    .table_3
                    .position(pick_position(positions, last_5_challenge_bits, 3))
                    .expect("Internally generated pointers must be correct; qed");
                let [left_position, right_position] = self
                    .table_2
                    .position(pick_position(positions, last_5_challenge_bits, 2))
                    .expect("Internally generated pointers must be correct; qed");

                let left_x = *self
                    .table_1
                    .xs()
                    .get(usize::from(left_position))
                    .expect("Internally generated pointers must be correct; qed");
                let right_x = *self
                    .table_1
                    .xs()
                    .get(usize::from(right_position))
                    .expect("Internally generated pointers must be correct; qed");

                let mut hasher = Sha256::new();
                hasher.update(challenge);
                let left_right_xs = (u64::from(left_x) << (u64::BITS as usize - usize::from(K)))
                    | (u64::from(right_x) << (u64::BITS as usize - usize::from(K * 2)));
                hasher.update(
                    &left_right_xs.to_be_bytes()[..(K as usize * 2).div_ceil(u8::BITS as usize)],
                );
                hasher.finalize().into()
            })
    }

    /// Find proof of space for given challenge.
    pub(super) fn find_proof<'a>(
        &'a self,
        challenge: &'a Challenge,
    ) -> impl Iterator<Item = [u8; 64 * K as usize / 8]> + 'a {
        let ys = self.table_7.ys();
        // We take advantage of the fact that entries are sorted by `y` (as big-endian numbers) to
        // quickly seek to desired offset
        let first_k_challenge_bits = u32::from_be_bytes(
            challenge[..mem::size_of::<u32>()]
                .try_into()
                .expect("Challenge is known to statically have enough bytes; qed"),
        ) >> (u32::BITS as usize - usize::from(K));
        let mut first_matching_element = ys
            .binary_search_by(|&y| y.first_k_bits::<K>().cmp(&first_k_challenge_bits))
            .unwrap_or_else(|insert| insert);

        // We only compare first K bits above, which is why `binary_search_by` is not guaranteed to
        // find the very first match in case there are multiple
        for index in (0..first_matching_element).rev() {
            if ys[index].first_k_bits::<K>() == first_k_challenge_bits {
                first_matching_element = index;
            } else {
                break;
            }
        }

        // Iterate just over elements that are matching `first_k_challenge_bits` prefix
        ys[first_matching_element..]
            .iter()
            .take_while(move |&&y| {
                // Check if first K bits of `y` match
                y.first_k_bits::<K>() == first_k_challenge_bits
            })
            .zip(Position::from(first_matching_element as u32)..)
            .map(move |(_y, position)| {
                let mut proof = [0u8; 64 * K as usize / 8];

                self.table_7
                    .position(position)
                    .expect("Internally generated pointers must be correct; qed")
                    .into_iter()
                    .flat_map(|position| {
                        self.table_6
                            .position(position)
                            .expect("Internally generated pointers must be correct; qed")
                    })
                    .flat_map(|position| {
                        self.table_5
                            .position(position)
                            .expect("Internally generated pointers must be correct; qed")
                    })
                    .flat_map(|position| {
                        self.table_4
                            .position(position)
                            .expect("Internally generated pointers must be correct; qed")
                    })
                    .flat_map(|position| {
                        self.table_3
                            .position(position)
                            .expect("Internally generated pointers must be correct; qed")
                    })
                    .flat_map(|position| {
                        self.table_2
                            .position(position)
                            .expect("Internally generated pointers must be correct; qed")
                    })
                    .map(|position| {
                        self.table_1
                            .xs()
                            .get(usize::from(position))
                            .expect("Internally generated pointers must be correct; qed")
                    })
                    .enumerate()
                    .for_each(|(offset, &x)| {
                        let x_offset_in_bits = usize::from(K) * offset;
                        // Collect bytes where bits of `x` will be written
                        let proof_bytes = &mut proof[x_offset_in_bits / u8::BITS as usize..]
                            [..(x_offset_in_bits % u8::BITS as usize + usize::from(K))
                                .div_ceil(u8::BITS as usize)];

                        // Bits of `x` already shifted to correct location as they will appear in
                        // `proof`
                        let x_shifted = u32::from(x)
                            << (u32::BITS as usize
                                - (usize::from(K) + x_offset_in_bits % u8::BITS as usize));

                        // Copy `x` bits into proof
                        x_shifted
                            .to_be_bytes()
                            .iter()
                            .zip(proof_bytes)
                            .for_each(|(from, to)| {
                                *to |= from;
                            });
                    });

                proof
            })
    }

    /// Verify proof of space for given seed and challenge.
    ///
    /// Returns quality on successful verification.
    pub(super) fn verify(
        seed: Seed,
        challenge: &Challenge,
        proof_of_space: &[u8; 64 * K as usize / 8],
    ) -> Option<Quality>
    where
        EvaluatableUsize<{ (K as usize * 2).div_ceil(u8::BITS as usize) }>: Sized,
    {
        let last_5_challenge_bits = challenge[challenge.len() - 1] & 0b00011111;
        let first_k_challenge_bits = u32::from_be_bytes(
            challenge[..mem::size_of::<u32>()]
                .try_into()
                .expect("Challenge is known to statically have enough bytes; qed"),
        ) >> (u32::BITS as usize - usize::from(K));

        let ys_and_metadata = (0..64_usize)
            .map(|offset| {
                let mut pre_x_bytes = 0u64.to_be_bytes();
                let offset_in_bits = usize::from(K) * offset;
                let bytes_to_copy = (offset_in_bits % u8::BITS as usize + usize::from(K))
                    .div_ceil(u8::BITS as usize);
                // Copy full bytes that contain bits of `x`
                pre_x_bytes[..bytes_to_copy].copy_from_slice(
                    &proof_of_space[offset_in_bits / u8::BITS as usize..][..bytes_to_copy],
                );
                // Extract `pre_x` whose last `K` bits start with `x`
                let pre_x = u64::from_be_bytes(pre_x_bytes)
                    >> (u64::BITS as usize - (usize::from(K) + offset_in_bits % u8::BITS as usize));
                // Convert to desired type and clear extra bits
                let x = X::from(pre_x as u32 & (u32::MAX >> (u32::BITS as usize - usize::from(K))));

                let (partial_y, partial_y_offset) = partial_y::<K>(seed, x);
                let y = compute_f1::<K>(x, &partial_y, partial_y_offset);

                (y, Metadata::from(x))
            })
            .collect::<Vec<_>>();

        Self::collect_ys_and_metadata::<2, 1>(&ys_and_metadata)
            .and_then(|ys_and_metadata| Self::collect_ys_and_metadata::<3, 2>(&ys_and_metadata))
            .and_then(|ys_and_metadata| Self::collect_ys_and_metadata::<4, 3>(&ys_and_metadata))
            .and_then(|ys_and_metadata| Self::collect_ys_and_metadata::<5, 4>(&ys_and_metadata))
            .and_then(|ys_and_metadata| Self::collect_ys_and_metadata::<6, 5>(&ys_and_metadata))
            .and_then(|ys_and_metadata| Self::collect_ys_and_metadata::<7, 6>(&ys_and_metadata))
            .filter(|ys_and_metadata| {
                let (y, _metadata) = ys_and_metadata
                    .first()
                    .expect("On success returns exactly one entry; qed");

                // Check if first K bits of `y` match
                y.first_k_bits::<K>() == first_k_challenge_bits
            })
            .map(|_| {
                let mut quality_index = 0_usize.to_be_bytes();
                quality_index[0] = last_5_challenge_bits;
                let quality_index = usize::from_be_bytes(quality_index);

                let mut hasher = Sha256::new();
                hasher.update(challenge);

                // NOTE: this works correctly, but may overflow if `quality_index` is changed to
                // not be zero-initialized anymore
                let left_right_xs_bit_offset = quality_index * usize::from(K * 2);
                // Collect `left_x` and `right_x` bits, potentially with extra bits at the beginning
                // and the end
                let left_right_xs_bytes =
                    &proof_of_space[left_right_xs_bit_offset / u8::BITS as usize..]
                        [..(left_right_xs_bit_offset % u8::BITS as usize + usize::from(K * 2))
                            .div_ceil(u8::BITS as usize)];

                let mut left_right_xs = 0u64.to_be_bytes();
                left_right_xs[..left_right_xs_bytes.len()].copy_from_slice(left_right_xs_bytes);
                // Move `left_x` and `right_x` bits to most significant bits
                let left_right_xs = u64::from_be_bytes(left_right_xs)
                    << (left_right_xs_bit_offset % u8::BITS as usize);
                // Clear extra bits
                let left_right_xs_mask = u64::MAX << (u64::BITS as usize - usize::from(K * 2));
                let left_right_xs = left_right_xs & left_right_xs_mask;

                hasher.update(
                    &left_right_xs.to_be_bytes()[..usize::from(K * 2).div_ceil(u8::BITS as usize)],
                );

                hasher.finalize().into()
            })
    }

    fn collect_ys_and_metadata<const TABLE_NUMBER: u8, const PARENT_TABLE_NUMBER: u8>(
        ys_and_metadata: &[(Y, Metadata<K, PARENT_TABLE_NUMBER>)],
    ) -> Option<Vec<(Y, Metadata<K, TABLE_NUMBER>)>>
    where
        EvaluatableUsize<{ metadata_size_bytes(K, TABLE_NUMBER) }>: Sized,
        EvaluatableUsize<{ metadata_size_bytes(K, PARENT_TABLE_NUMBER) }>: Sized,
    {
        ys_and_metadata
            .array_chunks::<2>()
            .map(|&[(left_y, left_metadata), (right_y, right_metadata)]| {
                has_match(left_y, right_y).then_some(compute_fn::<
                    K,
                    TABLE_NUMBER,
                    PARENT_TABLE_NUMBER,
                >(
                    left_y, left_metadata, right_metadata
                ))
            })
            .collect()
    }
}