subspace_proof_of_space/chiapos/
table.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
#[cfg(test)]
mod tests;
pub(super) mod types;

#[cfg(not(feature = "std"))]
extern crate alloc;

use crate::chiapos::constants::{PARAM_B, PARAM_BC, PARAM_C, PARAM_EXT, PARAM_M};
use crate::chiapos::table::types::{Metadata, Position, X, Y};
use crate::chiapos::utils::EvaluatableUsize;
use crate::chiapos::Seed;
#[cfg(not(feature = "std"))]
use alloc::vec;
#[cfg(not(feature = "std"))]
use alloc::vec::Vec;
use chacha20::cipher::{KeyIvInit, StreamCipher, StreamCipherSeek};
use chacha20::{ChaCha8, Key, Nonce};
use core::mem;
use core::simd::num::SimdUint;
use core::simd::Simd;
#[cfg(all(feature = "std", any(feature = "parallel", test)))]
use parking_lot::Mutex;
#[cfg(any(feature = "parallel", test))]
use rayon::prelude::*;
use seq_macro::seq;
#[cfg(all(not(feature = "std"), any(feature = "parallel", test)))]
use spin::Mutex;
use static_assertions::const_assert;
use subspace_core_primitives::hashes::{blake3_hash, blake3_hash_list};

pub(super) const COMPUTE_F1_SIMD_FACTOR: usize = 8;
pub(super) const FIND_MATCHES_AND_COMPUTE_UNROLL_FACTOR: usize = 8;
pub(super) const HAS_MATCH_UNROLL_FACTOR: usize = 8;

/// Compute the size of `y` in bits
pub(super) const fn y_size_bits(k: u8) -> usize {
    k as usize + PARAM_EXT as usize
}

/// Metadata size in bytes
pub const fn metadata_size_bytes(k: u8, table_number: u8) -> usize {
    metadata_size_bits(k, table_number).div_ceil(u8::BITS as usize)
}

/// Metadata size in bits
pub(super) const fn metadata_size_bits(k: u8, table_number: u8) -> usize {
    k as usize
        * match table_number {
            1 => 1,
            2 => 2,
            3 | 4 => 4,
            5 => 3,
            6 => 2,
            7 => 0,
            _ => unreachable!(),
        }
}

/// ChaCha8 [`Vec`] sufficient for the whole first table for [`K`].
/// Prefer [`partial_y`] if you need partial y just for a single `x`.
fn partial_ys<const K: u8>(seed: Seed) -> Vec<u8> {
    let output_len_bits = usize::from(K) * (1 << K);
    let mut output = vec![0; output_len_bits.div_ceil(u8::BITS as usize)];

    let key = Key::from(seed);
    let nonce = Nonce::default();

    let mut cipher = ChaCha8::new(&key, &nonce);

    cipher.apply_keystream(&mut output);

    output
}

/// ChaCha8 byte for a single `y` at `x` in the first table for [`K`], returns bytes and offset (in
/// bits) within those bytes at which data start.
/// Prefer [`partial_ys`] if you process the whole first table.
pub(super) fn partial_y<const K: u8>(
    seed: Seed,
    x: X,
) -> ([u8; (K as usize * 2).div_ceil(u8::BITS as usize)], usize) {
    let skip_bits = usize::from(K) * usize::from(x);
    let skip_bytes = skip_bits / u8::BITS as usize;
    let skip_bits = skip_bits % u8::BITS as usize;

    let mut output = [0; (K as usize * 2).div_ceil(u8::BITS as usize)];

    let key = Key::from(seed);
    let nonce = Nonce::default();

    let mut cipher = ChaCha8::new(&key, &nonce);

    cipher.seek(skip_bytes);
    cipher.apply_keystream(&mut output);

    (output, skip_bits)
}

#[derive(Debug, Clone)]
struct LeftTargets {
    left_targets: Vec<Position>,
}

fn calculate_left_targets() -> LeftTargets {
    let mut left_targets = Vec::with_capacity(2 * usize::from(PARAM_BC) * usize::from(PARAM_M));

    let param_b = u32::from(PARAM_B);
    let param_c = u32::from(PARAM_C);

    for parity in 0..=1u32 {
        for r in 0..u32::from(PARAM_BC) {
            let c = r / param_c;

            for m in 0..u32::from(PARAM_M) {
                let target = ((c + m) % param_b) * param_c
                    + (((2 * m + parity) * (2 * m + parity) + r) % param_c);
                left_targets.push(Position::from(target));
            }
        }
    }

    LeftTargets { left_targets }
}

fn calculate_left_target_on_demand(parity: u32, r: u32, m: u32) -> u32 {
    let param_b = u32::from(PARAM_B);
    let param_c = u32::from(PARAM_C);

    let c = r / param_c;

    ((c + m) % param_b) * param_c + (((2 * m + parity) * (2 * m + parity) + r) % param_c)
}

/// Caches that can be used to optimize creation of multiple [`Tables`](super::Tables).
#[derive(Debug, Clone)]
pub struct TablesCache<const K: u8> {
    buckets: Vec<Bucket>,
    rmap_scratch: Vec<RmapItem>,
    left_targets: LeftTargets,
}

impl<const K: u8> Default for TablesCache<K> {
    /// Create new instance
    fn default() -> Self {
        Self {
            buckets: Vec::new(),
            rmap_scratch: Vec::new(),
            left_targets: calculate_left_targets(),
        }
    }
}

#[derive(Debug)]
struct Match {
    left_position: Position,
    left_y: Y,
    right_position: Position,
}

#[derive(Debug, Default, Copy, Clone, Eq, PartialEq)]
struct Bucket {
    /// Bucket index
    bucket_index: u32,
    /// Start position of this bucket in the table
    start_position: Position,
    /// Size of this bucket
    size: Position,
}

#[derive(Debug, Default, Copy, Clone)]
pub(super) struct RmapItem {
    count: Position,
    start_position: Position,
}

/// `partial_y_offset` is in bits
pub(super) fn compute_f1<const K: u8>(x: X, partial_y: &[u8], partial_y_offset: usize) -> Y {
    let partial_y_length =
        (partial_y_offset % u8::BITS as usize + usize::from(K)).div_ceil(u8::BITS as usize);
    let mut pre_y_bytes = 0u64.to_be_bytes();
    pre_y_bytes[..partial_y_length]
        .copy_from_slice(&partial_y[partial_y_offset / u8::BITS as usize..][..partial_y_length]);
    // Contains `K` desired bits of `partial_y` in the final offset of eventual `y` with the rest
    // of bits being in undefined state
    let pre_y = u64::from_be_bytes(pre_y_bytes)
        >> (u64::BITS as usize - usize::from(K + PARAM_EXT) - partial_y_offset % u8::BITS as usize);
    let pre_y = pre_y as u32;
    // Mask for clearing the rest of bits of `pre_y`.
    let pre_y_mask = (u32::MAX << usize::from(PARAM_EXT))
        & (u32::MAX >> (u32::BITS as usize - usize::from(K + PARAM_EXT)));

    // Extract `PARAM_EXT` most significant bits from `x` and store in the final offset of
    // eventual `y` with the rest of bits being in undefined state.
    let pre_ext = u32::from(x) >> (usize::from(K - PARAM_EXT));
    // Mask for clearing the rest of bits of `pre_ext`.
    let pre_ext_mask = u32::MAX >> (u32::BITS as usize - usize::from(PARAM_EXT));

    // Combine all of the bits together:
    // [padding zero bits][`K` bits rom `partial_y`][`PARAM_EXT` bits from `x`]
    Y::from((pre_y & pre_y_mask) | (pre_ext & pre_ext_mask))
}

pub(super) fn compute_f1_simd<const K: u8>(
    xs: [X; COMPUTE_F1_SIMD_FACTOR],
    partial_ys: &[u8; K as usize * COMPUTE_F1_SIMD_FACTOR / u8::BITS as usize],
) -> [Y; COMPUTE_F1_SIMD_FACTOR] {
    // Each element contains `K` desired bits of `partial_ys` in the final offset of eventual `ys`
    // with the rest of bits being in undefined state
    let pre_ys_bytes: Simd<_, COMPUTE_F1_SIMD_FACTOR> = Simd::from(seq!(N in 0..8 {
        [
        #(
        {
            #[allow(clippy::erasing_op, clippy::identity_op)]
            let partial_y_offset = N * usize::from(K);
            let partial_y_length =
                (partial_y_offset % u8::BITS as usize + usize::from(K)).div_ceil(u8::BITS as usize);
            let mut pre_y_bytes = 0u64.to_be_bytes();
            pre_y_bytes[..partial_y_length].copy_from_slice(
                &partial_ys[partial_y_offset / u8::BITS as usize..][..partial_y_length],
            );

            u64::from_be_bytes(pre_y_bytes)
        },
        )*
        ]
    }));
    let pre_ys_right_offset: Simd<_, COMPUTE_F1_SIMD_FACTOR> = Simd::from(seq!(N in 0..8 {
        [
        #(
        {
            #[allow(clippy::erasing_op, clippy::identity_op)]
            let partial_y_offset = N * u32::from(K);
            u64::from(u64::BITS - u32::from(K + PARAM_EXT) - partial_y_offset % u8::BITS)
        },
        )*
        ]
    }));
    // TODO: both this and above operations are most likely possible on x86-64 with a special
    //  intrinsic in a more efficient way
    let pre_ys = pre_ys_bytes >> pre_ys_right_offset;

    // Mask for clearing the rest of bits of `pre_ys`.
    let pre_ys_mask = Simd::splat(
        (u32::MAX << usize::from(PARAM_EXT))
            & (u32::MAX >> (u32::BITS as usize - usize::from(K + PARAM_EXT))),
    );

    // SAFETY: `X` is `#[repr(transparent)]` and guaranteed to have the same memory layout as `u32`
    let xs =
        unsafe { mem::transmute::<[X; COMPUTE_F1_SIMD_FACTOR], [u32; COMPUTE_F1_SIMD_FACTOR]>(xs) };
    // Extract `PARAM_EXT` most significant bits from `xs` and store in the final offset of
    // eventual `ys` with the rest of bits being in undefined state.
    let pre_exts = Simd::from(xs) >> Simd::splat(u32::from(K - PARAM_EXT));

    // Mask for clearing the rest of bits of `pre_exts`.
    let pre_exts_mask = Simd::splat(u32::MAX >> (u32::BITS as usize - usize::from(PARAM_EXT)));

    // Combine all of the bits together:
    // [padding zero bits][`K` bits rom `partial_y`][`PARAM_EXT` bits from `x`]
    // NOTE: `pre_exts_mask` is unnecessary here and makes no difference, but it allows compiler to
    // generate faster code 🤷‍
    let ys = (pre_ys.cast() & pre_ys_mask) | (pre_exts & pre_exts_mask);

    // SAFETY: `Y` is `#[repr(transparent)]` and guaranteed to have the same memory layout as `u32`
    unsafe { mem::transmute(ys.to_array()) }
}

/// `rmap_scratch` is just an optimization to reuse allocations between calls.
///
/// For verification purposes use [`has_match`] instead.
///
/// Returns `None` if either of buckets is empty.
#[allow(clippy::too_many_arguments)]
fn find_matches<T, Map>(
    left_bucket_ys: &[Y],
    left_bucket_start_position: Position,
    right_bucket_ys: &[Y],
    right_bucket_start_position: Position,
    rmap_scratch: &mut Vec<RmapItem>,
    left_targets: &LeftTargets,
    map: Map,
    output: &mut Vec<T>,
) where
    Map: Fn(Match) -> T,
{
    // Clear and set to correct size with zero values
    rmap_scratch.clear();
    rmap_scratch.resize_with(usize::from(PARAM_BC), RmapItem::default);
    let rmap = rmap_scratch;

    // Both left and right buckets can be empty
    let Some(&first_left_bucket_y) = left_bucket_ys.first() else {
        return;
    };
    let Some(&first_right_bucket_y) = right_bucket_ys.first() else {
        return;
    };
    // Since all entries in a bucket are obtained after division by `PARAM_BC`, we can compute
    // quotient more efficiently by subtracting base value rather than computing remainder of
    // division
    let base = (usize::from(first_right_bucket_y) / usize::from(PARAM_BC)) * usize::from(PARAM_BC);
    for (&y, right_position) in right_bucket_ys.iter().zip(right_bucket_start_position..) {
        let r = usize::from(y) - base;

        // Same `y` and as the result `r` can appear in the table multiple times, in which case
        // they'll all occupy consecutive slots in `right_bucket` and all we need to store is just
        // the first position and number of elements.
        if rmap[r].count == Position::ZERO {
            rmap[r].start_position = right_position;
        }
        rmap[r].count += Position::ONE;
    }
    let rmap = rmap.as_slice();

    // Same idea as above, but avoids division by leveraging the fact that each bucket is exactly
    // `PARAM_BC` away from the previous one in terms of divisor by `PARAM_BC`
    let base = base - usize::from(PARAM_BC);
    let parity = (usize::from(first_left_bucket_y) / usize::from(PARAM_BC)) % 2;
    let left_targets_parity = {
        let (a, b) = left_targets
            .left_targets
            .split_at(left_targets.left_targets.len() / 2);
        if parity == 0 {
            a
        } else {
            b
        }
    };

    for (&y, left_position) in left_bucket_ys.iter().zip(left_bucket_start_position..) {
        let r = usize::from(y) - base;
        let left_targets_r = left_targets_parity
            .chunks_exact(left_targets_parity.len() / usize::from(PARAM_BC))
            .nth(r)
            .expect("r is valid");

        const_assert!(PARAM_M as usize % FIND_MATCHES_AND_COMPUTE_UNROLL_FACTOR == 0);

        for r_targets in left_targets_r
            .array_chunks::<{ FIND_MATCHES_AND_COMPUTE_UNROLL_FACTOR }>()
            .take(usize::from(PARAM_M) / FIND_MATCHES_AND_COMPUTE_UNROLL_FACTOR)
        {
            let _: [(); FIND_MATCHES_AND_COMPUTE_UNROLL_FACTOR] = seq!(N in 0..8 {
                [
                #(
                {
                    let rmap_item = rmap[usize::from(r_targets[N])];

                    for right_position in
                        rmap_item.start_position..rmap_item.start_position + rmap_item.count
                    {
                        let m = Match {
                            left_position,
                            left_y: y,
                            right_position,
                        };
                        output.push(map(m));
                    }
                },
                )*
                ]
            });
        }
    }
}

/// Simplified version of [`find_matches`] for verification purposes.
pub(super) fn has_match(left_y: Y, right_y: Y) -> bool {
    let right_r = u32::from(right_y) % u32::from(PARAM_BC);
    let parity = (u32::from(left_y) / u32::from(PARAM_BC)) % 2;
    let left_r = u32::from(left_y) % u32::from(PARAM_BC);

    const_assert!(PARAM_M as usize % HAS_MATCH_UNROLL_FACTOR == 0);

    for m in 0..u32::from(PARAM_M) / HAS_MATCH_UNROLL_FACTOR as u32 {
        let _: [(); HAS_MATCH_UNROLL_FACTOR] = seq!(N in 0..8 {
            [
            #(
            {
                #[allow(clippy::identity_op)]
                let r_target = calculate_left_target_on_demand(parity, left_r, m * HAS_MATCH_UNROLL_FACTOR as u32 + N);
                if r_target == right_r {
                    return true;
                }
            },
            )*
            ]
        });
    }

    false
}

pub(super) fn compute_fn<const K: u8, const TABLE_NUMBER: u8, const PARENT_TABLE_NUMBER: u8>(
    y: Y,
    left_metadata: Metadata<K, PARENT_TABLE_NUMBER>,
    right_metadata: Metadata<K, PARENT_TABLE_NUMBER>,
) -> (Y, Metadata<K, TABLE_NUMBER>)
where
    EvaluatableUsize<{ metadata_size_bytes(K, PARENT_TABLE_NUMBER) }>: Sized,
    EvaluatableUsize<{ metadata_size_bytes(K, TABLE_NUMBER) }>: Sized,
{
    let left_metadata = u128::from(left_metadata);
    let right_metadata = u128::from(right_metadata);

    let parent_metadata_bits = metadata_size_bits(K, PARENT_TABLE_NUMBER);

    // Only supports `K` from 15 to 25 (otherwise math will not be correct when concatenating y,
    // left metadata and right metadata)
    let hash = {
        // Take only bytes where bits were set
        let num_bytes_with_data = (y_size_bits(K) + metadata_size_bits(K, PARENT_TABLE_NUMBER) * 2)
            .div_ceil(u8::BITS as usize);

        // Collect `K` most significant bits of `y` at the final offset of eventual `input_a`
        let y_bits = u128::from(y) << (u128::BITS as usize - y_size_bits(K));

        // Move bits of `left_metadata` at the final offset of eventual `input_a`
        let left_metadata_bits =
            left_metadata << (u128::BITS as usize - parent_metadata_bits - y_size_bits(K));

        // Part of the `right_bits` at the final offset of eventual `input_a`
        let y_and_left_bits = y_size_bits(K) + parent_metadata_bits;
        let right_bits_start_offset = u128::BITS as usize - parent_metadata_bits;

        // If `right_metadata` bits start to the left of the desired position in `input_a` move
        // bits right, else move left
        if right_bits_start_offset < y_and_left_bits {
            let right_bits_pushed_into_input_b = y_and_left_bits - right_bits_start_offset;
            // Collect bits of `right_metadata` that will fit into `input_a` at the final offset in
            // eventual `input_a`
            let right_bits_a = right_metadata >> right_bits_pushed_into_input_b;
            let input_a = y_bits | left_metadata_bits | right_bits_a;
            // Collect bits of `right_metadata` that will spill over into `input_b`
            let input_b = right_metadata << (u128::BITS as usize - right_bits_pushed_into_input_b);

            blake3_hash_list(&[
                &input_a.to_be_bytes(),
                &input_b.to_be_bytes()
                    [..right_bits_pushed_into_input_b.div_ceil(u8::BITS as usize)],
            ])
        } else {
            let right_bits_a = right_metadata << (right_bits_start_offset - y_and_left_bits);
            let input_a = y_bits | left_metadata_bits | right_bits_a;

            blake3_hash(&input_a.to_be_bytes()[..num_bytes_with_data])
        }
    };

    let y_output = Y::from(
        u32::from_be_bytes(
            hash[..mem::size_of::<u32>()]
                .try_into()
                .expect("Hash if statically guaranteed to have enough bytes; qed"),
        ) >> (u32::BITS as usize - y_size_bits(K)),
    );

    let metadata_size_bits = metadata_size_bits(K, TABLE_NUMBER);

    let metadata = if TABLE_NUMBER < 4 {
        (left_metadata << parent_metadata_bits) | right_metadata
    } else if metadata_size_bits > 0 {
        // For K under 25 it is guaranteed that metadata + bit offset will always fit into u128.
        // We collect bytes necessary, potentially with extra bits at the start and end of the bytes
        // that will be taken care of later.
        let metadata = u128::from_be_bytes(
            hash[y_size_bits(K) / u8::BITS as usize..][..mem::size_of::<u128>()]
                .try_into()
                .expect("Always enough bits for any K; qed"),
        );
        // Remove extra bits at the beginning
        let metadata = metadata << (y_size_bits(K) % u8::BITS as usize);
        // Move bits into correct location
        metadata >> (u128::BITS as usize - metadata_size_bits)
    } else {
        0
    };

    (y_output, Metadata::from(metadata))
}

fn match_to_result<const K: u8, const TABLE_NUMBER: u8, const PARENT_TABLE_NUMBER: u8>(
    last_table: &Table<K, PARENT_TABLE_NUMBER>,
    m: Match,
) -> (Y, [Position; 2], Metadata<K, TABLE_NUMBER>)
where
    EvaluatableUsize<{ metadata_size_bytes(K, PARENT_TABLE_NUMBER) }>: Sized,
    EvaluatableUsize<{ metadata_size_bytes(K, TABLE_NUMBER) }>: Sized,
{
    let left_metadata = last_table
        .metadata(m.left_position)
        .expect("Position resulted from matching is correct; qed");
    let right_metadata = last_table
        .metadata(m.right_position)
        .expect("Position resulted from matching is correct; qed");

    let (y, metadata) =
        compute_fn::<K, TABLE_NUMBER, PARENT_TABLE_NUMBER>(m.left_y, left_metadata, right_metadata);

    (y, [m.left_position, m.right_position], metadata)
}

fn match_and_compute_fn<'a, const K: u8, const TABLE_NUMBER: u8, const PARENT_TABLE_NUMBER: u8>(
    last_table: &'a Table<K, PARENT_TABLE_NUMBER>,
    left_bucket: Bucket,
    right_bucket: Bucket,
    rmap_scratch: &'a mut Vec<RmapItem>,
    left_targets: &'a LeftTargets,
    results_table: &mut Vec<(Y, [Position; 2], Metadata<K, TABLE_NUMBER>)>,
) where
    EvaluatableUsize<{ metadata_size_bytes(K, PARENT_TABLE_NUMBER) }>: Sized,
    EvaluatableUsize<{ metadata_size_bytes(K, TABLE_NUMBER) }>: Sized,
{
    find_matches(
        &last_table.ys()[usize::from(left_bucket.start_position)..]
            [..usize::from(left_bucket.size)],
        left_bucket.start_position,
        &last_table.ys()[usize::from(right_bucket.start_position)..]
            [..usize::from(right_bucket.size)],
        right_bucket.start_position,
        rmap_scratch,
        left_targets,
        |m| match_to_result(last_table, m),
        results_table,
    )
}

#[derive(Debug)]
pub(super) enum Table<const K: u8, const TABLE_NUMBER: u8>
where
    EvaluatableUsize<{ metadata_size_bytes(K, TABLE_NUMBER) }>: Sized,
{
    /// First table with contents of entries split into separate vectors for more efficient access
    First {
        /// Derived values computed from `x`
        ys: Vec<Y>,
        /// X values
        xs: Vec<X>,
    },
    /// Other tables
    Other {
        /// Derived values computed from previous table
        ys: Vec<Y>,
        /// Left and right entry positions in a previous table encoded into bits
        positions: Vec<[Position; 2]>,
        /// Metadata corresponding to each entry
        metadatas: Vec<Metadata<K, TABLE_NUMBER>>,
    },
}

impl<const K: u8> Table<K, 1>
where
    EvaluatableUsize<{ metadata_size_bytes(K, 1) }>: Sized,
{
    /// Create the table
    pub(super) fn create(seed: Seed) -> Self
    where
        EvaluatableUsize<{ K as usize * COMPUTE_F1_SIMD_FACTOR / u8::BITS as usize }>: Sized,
    {
        let partial_ys = partial_ys::<K>(seed);

        let mut t_1 = Vec::with_capacity(1_usize << K);
        for (x_start, partial_ys) in X::all::<K>().step_by(COMPUTE_F1_SIMD_FACTOR).zip(
            partial_ys
                .array_chunks::<{ K as usize * COMPUTE_F1_SIMD_FACTOR / u8::BITS as usize }>()
                .copied(),
        ) {
            let xs: [_; COMPUTE_F1_SIMD_FACTOR] = seq!(N in 0..8 {
                [
                #(
                #[allow(clippy::erasing_op, clippy::identity_op)]
                {
                    x_start + X::from(N)
                },
                )*
                ]
            });

            let ys = compute_f1_simd::<K>(xs, &partial_ys);
            t_1.extend(ys.into_iter().zip(xs));
        }

        t_1.sort_unstable();

        let (ys, xs) = t_1.into_iter().unzip();

        Self::First { ys, xs }
    }

    /// Create the table, leverages available parallelism
    #[cfg(any(feature = "parallel", test))]
    pub(super) fn create_parallel(seed: Seed) -> Self
    where
        EvaluatableUsize<{ K as usize * COMPUTE_F1_SIMD_FACTOR / u8::BITS as usize }>: Sized,
    {
        let partial_ys = partial_ys::<K>(seed);

        let mut t_1 = Vec::with_capacity(1_usize << K);
        for (x_start, partial_ys) in X::all::<K>().step_by(COMPUTE_F1_SIMD_FACTOR).zip(
            partial_ys
                .array_chunks::<{ K as usize * COMPUTE_F1_SIMD_FACTOR / u8::BITS as usize }>()
                .copied(),
        ) {
            let xs: [_; COMPUTE_F1_SIMD_FACTOR] = seq!(N in 0..8 {
                [
                #(
                #[allow(clippy::erasing_op, clippy::identity_op)]
                {
                    x_start + X::from(N)
                },
                )*
                ]
            });

            let ys = compute_f1_simd::<K>(xs, &partial_ys);
            t_1.extend(ys.into_iter().zip(xs));
        }

        t_1.par_sort_unstable();

        let (ys, xs) = t_1.into_iter().unzip();

        Self::First { ys, xs }
    }

    /// All `x`s as [`BitSlice`], for individual `x`s needs to be slices into [`K`] bits slices
    pub(super) fn xs(&self) -> &[X] {
        match self {
            Table::First { xs, .. } => xs,
            _ => {
                unreachable!()
            }
        }
    }
}

mod private {
    pub(in super::super) trait SupportedOtherTables {}
}

impl<const K: u8> private::SupportedOtherTables for Table<K, 2> where
    EvaluatableUsize<{ metadata_size_bytes(K, 2) }>: Sized
{
}

impl<const K: u8> private::SupportedOtherTables for Table<K, 3> where
    EvaluatableUsize<{ metadata_size_bytes(K, 3) }>: Sized
{
}

impl<const K: u8> private::SupportedOtherTables for Table<K, 4> where
    EvaluatableUsize<{ metadata_size_bytes(K, 4) }>: Sized
{
}

impl<const K: u8> private::SupportedOtherTables for Table<K, 5> where
    EvaluatableUsize<{ metadata_size_bytes(K, 5) }>: Sized
{
}

impl<const K: u8> private::SupportedOtherTables for Table<K, 6> where
    EvaluatableUsize<{ metadata_size_bytes(K, 6) }>: Sized
{
}

impl<const K: u8> private::SupportedOtherTables for Table<K, 7> where
    EvaluatableUsize<{ metadata_size_bytes(K, 7) }>: Sized
{
}

impl<const K: u8, const TABLE_NUMBER: u8> Table<K, TABLE_NUMBER>
where
    Self: private::SupportedOtherTables,
    EvaluatableUsize<{ metadata_size_bytes(K, TABLE_NUMBER) }>: Sized,
{
    /// Creates new [`TABLE_NUMBER`] table. There also exists [`Self::create_parallel()`] that
    /// trades CPU efficiency and memory usage for lower latency.
    pub(super) fn create<const PARENT_TABLE_NUMBER: u8>(
        last_table: &Table<K, PARENT_TABLE_NUMBER>,
        cache: &mut TablesCache<K>,
    ) -> Self
    where
        EvaluatableUsize<{ metadata_size_bytes(K, PARENT_TABLE_NUMBER) }>: Sized,
    {
        let buckets = &mut cache.buckets;
        let rmap_scratch = &mut cache.rmap_scratch;
        let left_targets = &cache.left_targets;

        let mut bucket = Bucket {
            bucket_index: 0,
            start_position: Position::ZERO,
            size: Position::ZERO,
        };

        let last_y = *last_table
            .ys()
            .last()
            .expect("List of y values is never empty; qed");
        buckets.clear();
        buckets.reserve(1 + usize::from(last_y) / usize::from(PARAM_BC));
        last_table
            .ys()
            .iter()
            .zip(Position::ZERO..)
            .for_each(|(&y, position)| {
                let bucket_index = u32::from(y) / u32::from(PARAM_BC);

                if bucket_index == bucket.bucket_index {
                    bucket.size += Position::ONE;
                    return;
                }

                buckets.push(bucket);

                bucket = Bucket {
                    bucket_index,
                    start_position: position,
                    size: Position::ONE,
                };
            });
        // Iteration stopped, but we did not store the last bucket yet
        buckets.push(bucket);

        let num_values = 1 << K;
        let mut t_n = Vec::with_capacity(num_values);
        buckets
            .array_windows::<2>()
            .for_each(|&[left_bucket, right_bucket]| {
                match_and_compute_fn::<K, TABLE_NUMBER, PARENT_TABLE_NUMBER>(
                    last_table,
                    left_bucket,
                    right_bucket,
                    rmap_scratch,
                    left_targets,
                    &mut t_n,
                );
            });

        t_n.sort_unstable();

        let mut ys = Vec::with_capacity(t_n.len());
        let mut positions = Vec::with_capacity(t_n.len());
        let mut metadatas = Vec::with_capacity(t_n.len());

        for (y, [left_position, right_position], metadata) in t_n {
            ys.push(y);
            positions.push([left_position, right_position]);
            // Last table doesn't have metadata
            if metadata_size_bits(K, TABLE_NUMBER) > 0 {
                metadatas.push(metadata);
            }
        }

        Self::Other {
            ys,
            positions,
            metadatas,
        }
    }

    /// Almost the same as [`Self::create()`], but uses parallelism internally for better
    /// performance (though not efficiency of CPU and memory usage), if you create multiple tables
    /// in parallel, prefer [`Self::create()`] for better overall performance.
    #[cfg(any(feature = "parallel", test))]
    pub(super) fn create_parallel<const PARENT_TABLE_NUMBER: u8>(
        last_table: &Table<K, PARENT_TABLE_NUMBER>,
        cache: &mut TablesCache<K>,
    ) -> Self
    where
        EvaluatableUsize<{ metadata_size_bytes(K, PARENT_TABLE_NUMBER) }>: Sized,
    {
        let left_targets = &cache.left_targets;

        let mut first_bucket = Bucket {
            bucket_index: u32::from(last_table.ys()[0]) / u32::from(PARAM_BC),
            start_position: Position::ZERO,
            size: Position::ZERO,
        };
        for &y in last_table.ys() {
            let bucket_index = u32::from(y) / u32::from(PARAM_BC);

            if bucket_index == first_bucket.bucket_index {
                first_bucket.size += Position::ONE;
            } else {
                break;
            }
        }

        let previous_bucket = Mutex::new(first_bucket);

        let t_n = rayon::broadcast(|_ctx| {
            let mut entries = Vec::new();
            let mut rmap_scratch = Vec::new();

            loop {
                let left_bucket;
                let right_bucket;
                {
                    let mut previous_bucket = previous_bucket.lock();

                    let right_bucket_start_position =
                        previous_bucket.start_position + previous_bucket.size;
                    let right_bucket_index = match last_table
                        .ys()
                        .get(usize::from(right_bucket_start_position))
                    {
                        Some(&y) => u32::from(y) / u32::from(PARAM_BC),
                        None => {
                            break;
                        }
                    };
                    let mut right_bucket_size = Position::ZERO;

                    for &y in &last_table.ys()[usize::from(right_bucket_start_position)..] {
                        let bucket_index = u32::from(y) / u32::from(PARAM_BC);

                        if bucket_index == right_bucket_index {
                            right_bucket_size += Position::ONE;
                        } else {
                            break;
                        }
                    }

                    right_bucket = Bucket {
                        bucket_index: right_bucket_index,
                        start_position: right_bucket_start_position,
                        size: right_bucket_size,
                    };

                    left_bucket = *previous_bucket;
                    *previous_bucket = right_bucket;
                }

                match_and_compute_fn::<K, TABLE_NUMBER, PARENT_TABLE_NUMBER>(
                    last_table,
                    left_bucket,
                    right_bucket,
                    &mut rmap_scratch,
                    left_targets,
                    &mut entries,
                );
            }

            entries
        });

        let mut t_n = t_n.into_iter().flatten().collect::<Vec<_>>();
        t_n.par_sort_unstable();

        let mut ys = Vec::with_capacity(t_n.len());
        let mut positions = Vec::with_capacity(t_n.len());
        let mut metadatas = Vec::with_capacity(t_n.len());

        for (y, [left_position, right_position], metadata) in t_n.drain(..) {
            ys.push(y);
            positions.push([left_position, right_position]);
            // Last table doesn't have metadata
            if metadata_size_bits(K, TABLE_NUMBER) > 0 {
                metadatas.push(metadata);
            }
        }

        // Drop from a background thread, which typically helps with overall concurrency
        rayon::spawn(move || {
            drop(t_n);
        });

        Self::Other {
            ys,
            positions,
            metadatas,
        }
    }
}

impl<const K: u8, const TABLE_NUMBER: u8> Table<K, TABLE_NUMBER>
where
    EvaluatableUsize<{ metadata_size_bytes(K, TABLE_NUMBER) }>: Sized,
{
    /// All `y`s as [`BitSlice`], for individual `x`s needs to be slices into [`K`] bits slices
    pub(super) fn ys(&self) -> &[Y] {
        let (Table::First { ys, .. } | Table::Other { ys, .. }) = self;
        ys
    }

    /// Returns `None` on invalid position or first table, `Some(left_position, right_position)` in
    /// previous table on success
    pub(super) fn position(&self, position: Position) -> Option<[Position; 2]> {
        match self {
            Table::First { .. } => None,
            Table::Other { positions, .. } => positions.get(usize::from(position)).copied(),
        }
    }

    /// Returns `None` on invalid position or for table number 7
    pub(super) fn metadata(&self, position: Position) -> Option<Metadata<K, TABLE_NUMBER>> {
        match self {
            Table::First { xs, .. } => xs.get(usize::from(position)).map(|&x| Metadata::from(x)),
            Table::Other { metadatas, .. } => metadatas.get(usize::from(position)).copied(),
        }
    }
}