subspace_kzg/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
//! KZG primitives for Subspace Network
#[cfg(test)]
mod tests;
extern crate alloc;
use alloc::collections::btree_map::Entry;
use alloc::collections::BTreeMap;
#[cfg(not(feature = "std"))]
use alloc::string::{String, ToString};
use alloc::sync::Arc;
#[cfg(not(feature = "std"))]
use alloc::vec::Vec;
use core::mem;
use derive_more::{AsMut, AsRef, Deref, DerefMut, From, Into};
use kzg::eip_4844::{BYTES_PER_G1, BYTES_PER_G2};
use kzg::{FFTFr, FFTSettings, Fr, KZGSettings, G1, G2};
#[cfg(feature = "std")]
use parking_lot::Mutex;
use rust_kzg_blst::types::fft_settings::FsFFTSettings;
use rust_kzg_blst::types::fr::FsFr;
use rust_kzg_blst::types::g1::FsG1;
use rust_kzg_blst::types::g2::FsG2;
use rust_kzg_blst::types::kzg_settings::FsKZGSettings;
use rust_kzg_blst::types::poly::FsPoly;
#[cfg(not(feature = "std"))]
use spin::Mutex;
use static_assertions::const_assert_eq;
use subspace_core_primitives::pieces::{RecordCommitment, RecordWitness};
use subspace_core_primitives::segments::SegmentCommitment;
use subspace_core_primitives::solutions::ChunkWitness;
use subspace_core_primitives::ScalarBytes;
use tracing::debug;
/// Embedded KZG settings as bytes, too big for `no_std` in most cases
/// Generated using following command (using current Ethereum KZG Summoning Ceremony):
/// ```bash
/// curl -s https://seq.ceremony.ethereum.org/info/current_state | jq '.transcripts[3].powersOfTau' | jq -r '.G1Powers + .G2Powers | map(.[2:]) | join("")' | xxd -r -p - eth-public-parameters.bin
/// ```
pub const EMBEDDED_KZG_SETTINGS_BYTES: &[u8] = include_bytes!("eth-public-parameters.bin");
/// Number of G1 powers stored in [`EMBEDDED_KZG_SETTINGS_BYTES`]
pub const NUM_G1_POWERS: usize = 32_768;
/// Number of G2 powers stored in [`EMBEDDED_KZG_SETTINGS_BYTES`]
pub const NUM_G2_POWERS: usize = 65;
// Symmetric function is present in tests
/// Function turns bytes into `FsKZGSettings`, it is up to the user to ensure that bytes make sense,
/// otherwise result can be very wrong (but will not panic).
fn bytes_to_kzg_settings(
bytes: &[u8],
num_g1_powers: usize,
num_g2_powers: usize,
) -> Result<FsKZGSettings, String> {
if bytes.len() != BYTES_PER_G1 * num_g1_powers + BYTES_PER_G2 * num_g2_powers {
return Err("Invalid bytes length".to_string());
}
let (secret_g1_bytes, secret_g2_bytes) = bytes.split_at(BYTES_PER_G1 * num_g1_powers);
let secret_g1 = secret_g1_bytes
.chunks_exact(BYTES_PER_G1)
.map(FsG1::from_bytes)
.collect::<Result<Vec<_>, _>>()?;
let secret_g2 = secret_g2_bytes
.chunks_exact(BYTES_PER_G2)
.map(FsG2::from_bytes)
.collect::<Result<Vec<_>, _>>()?;
let fft_settings = FsFFTSettings::new(
num_g1_powers
.checked_sub(1)
.expect("Checked to be not empty above; qed")
.ilog2() as usize,
)
.expect("Scale is within allowed bounds; qed");
// Below is the same as `FsKZGSettings::new(&s1, &s2, num_g1_powers, &fft_settings)`, but without
// extra checks (parameters are static anyway) and without unnecessary allocations
// TODO: Switch to `::new()` constructor once
// https://github.com/grandinetech/rust-kzg/issues/264 is resolved
Ok(FsKZGSettings {
fs: fft_settings,
secret_g1,
secret_g2,
precomputation: None,
})
}
/// Commitment to polynomial
#[derive(Debug, Clone, From)]
pub struct Polynomial(FsPoly);
impl Polynomial {
/// Normalize polynomial by removing trailing zeroes
pub fn normalize(&mut self) {
let trailing_zeroes = self
.0
.coeffs
.iter()
.rev()
.take_while(|coeff| coeff.is_zero())
.count();
self.0
.coeffs
.truncate((self.0.coeffs.len() - trailing_zeroes).max(1));
}
}
/// Representation of a single BLS12-381 scalar value.
#[derive(Debug, Default, Copy, Clone, Eq, PartialEq, Deref, DerefMut)]
#[repr(transparent)]
pub struct Scalar(FsFr);
const_assert_eq!(
mem::size_of::<Option<Scalar>>(),
mem::size_of::<Option<FsFr>>()
);
const_assert_eq!(
mem::align_of::<Option<Scalar>>(),
mem::align_of::<Option<FsFr>>()
);
impl From<&[u8; ScalarBytes::SAFE_BYTES]> for Scalar {
#[inline]
fn from(value: &[u8; ScalarBytes::SAFE_BYTES]) -> Self {
let mut bytes = [0u8; ScalarBytes::FULL_BYTES];
bytes[1..].copy_from_slice(value);
Self::try_from(bytes).expect("Safe bytes always fit into scalar and thus succeed; qed")
}
}
impl From<[u8; ScalarBytes::SAFE_BYTES]> for Scalar {
#[inline]
fn from(value: [u8; ScalarBytes::SAFE_BYTES]) -> Self {
Self::from(&value)
}
}
impl TryFrom<&[u8; ScalarBytes::FULL_BYTES]> for Scalar {
type Error = String;
#[inline]
fn try_from(value: &[u8; ScalarBytes::FULL_BYTES]) -> Result<Self, Self::Error> {
Self::try_from(*value)
}
}
impl TryFrom<[u8; ScalarBytes::FULL_BYTES]> for Scalar {
type Error = String;
#[inline]
fn try_from(value: [u8; ScalarBytes::FULL_BYTES]) -> Result<Self, Self::Error> {
FsFr::from_bytes(&value).map(Scalar)
}
}
impl TryFrom<&ScalarBytes> for Scalar {
type Error = String;
#[inline]
fn try_from(value: &ScalarBytes) -> Result<Self, Self::Error> {
FsFr::from_bytes(value.as_ref()).map(Scalar)
}
}
impl TryFrom<ScalarBytes> for Scalar {
type Error = String;
#[inline]
fn try_from(value: ScalarBytes) -> Result<Self, Self::Error> {
Self::try_from(&value)
}
}
impl From<&Scalar> for [u8; ScalarBytes::FULL_BYTES] {
#[inline]
fn from(value: &Scalar) -> Self {
value.0.to_bytes()
}
}
impl From<Scalar> for [u8; ScalarBytes::FULL_BYTES] {
#[inline]
fn from(value: Scalar) -> Self {
Self::from(&value)
}
}
impl From<&Scalar> for ScalarBytes {
#[inline]
fn from(value: &Scalar) -> Self {
ScalarBytes::from(value.0.to_bytes())
}
}
impl From<Scalar> for ScalarBytes {
#[inline]
fn from(value: Scalar) -> Self {
Self::from(&value)
}
}
impl Scalar {
/// Convert scalar into bytes
pub fn to_bytes(&self) -> [u8; ScalarBytes::FULL_BYTES] {
self.into()
}
/// Convert scalar into safe bytes, returns `None` if not possible to convert due to larger
/// internal value
pub fn try_to_safe_bytes(&self) -> Option<[u8; ScalarBytes::SAFE_BYTES]> {
let bytes = self.to_bytes();
if bytes[0] == 0 {
Some(bytes[1..].try_into().expect("Correct length; qed"))
} else {
None
}
}
/// Convenient conversion from slice of scalar to underlying representation for efficiency
/// purposes.
#[inline]
pub fn slice_to_repr(value: &[Self]) -> &[FsFr] {
// SAFETY: `Scalar` is `#[repr(transparent)]` and guaranteed to have the same memory layout
unsafe { mem::transmute(value) }
}
/// Convenient conversion from slice of underlying representation to scalar for efficiency
/// purposes.
#[inline]
pub fn slice_from_repr(value: &[FsFr]) -> &[Self] {
// SAFETY: `Scalar` is `#[repr(transparent)]` and guaranteed to have the same memory layout
unsafe { mem::transmute(value) }
}
/// Convenient conversion from slice of optional scalar to underlying representation for efficiency
/// purposes.
#[inline]
pub fn slice_option_to_repr(value: &[Option<Self>]) -> &[Option<FsFr>] {
// SAFETY: `Scalar` is `#[repr(transparent)]` containing `#[repr(C)]` and we assume the
// compiler lays out optional `repr(C)` plain old data arrays the same as their optional
// transparent wrappers
unsafe { mem::transmute(value) }
}
/// Convenient conversion from slice of optional underlying representation to scalar for efficiency
/// purposes.
#[inline]
pub fn slice_option_from_repr(value: &[Option<FsFr>]) -> &[Option<Self>] {
// SAFETY: `Scalar` is `#[repr(transparent)]` containing `#[repr(C)]` and we assume the
// compiler lays out optional `repr(C)` plain old data arrays the same as their optional
// transparent wrappers
unsafe { mem::transmute(value) }
}
/// Convenient conversion from mutable slice of scalar to underlying representation for
/// efficiency purposes.
#[inline]
pub fn slice_mut_to_repr(value: &mut [Self]) -> &mut [FsFr] {
// SAFETY: `Scalar` is `#[repr(transparent)]` and guaranteed to have the same memory layout
unsafe { mem::transmute(value) }
}
/// Convenient conversion from mutable slice of underlying representation to scalar for
/// efficiency purposes.
#[inline]
pub fn slice_mut_from_repr(value: &mut [FsFr]) -> &mut [Self] {
// SAFETY: `Scalar` is `#[repr(transparent)]` and guaranteed to have the same memory layout
unsafe { mem::transmute(value) }
}
/// Convenient conversion from optional mutable slice of scalar to underlying representation for
/// efficiency purposes.
#[inline]
pub fn slice_option_mut_to_repr(value: &mut [Option<Self>]) -> &mut [Option<FsFr>] {
// SAFETY: `Scalar` is `#[repr(transparent)]` containing `#[repr(C)]` and we assume the
// compiler lays out optional `repr(C)` plain old data arrays the same as their optional
// transparent wrappers
unsafe { mem::transmute(value) }
}
/// Convenient conversion from optional mutable slice of underlying representation to scalar for
/// efficiency purposes.
#[inline]
pub fn slice_option_mut_from_repr(value: &mut [Option<FsFr>]) -> &mut [Option<Self>] {
// SAFETY: `Scalar` is `#[repr(transparent)]` containing `#[repr(C)]` and we assume the
// compiler lays out optional `repr(C)` plain old data arrays the same as their optional
// transparent wrappers
unsafe { mem::transmute(value) }
}
/// Convenient conversion from vector of scalar to underlying representation for efficiency
/// purposes.
#[inline]
pub fn vec_to_repr(value: Vec<Self>) -> Vec<FsFr> {
// SAFETY: `Scalar` is `#[repr(transparent)]` and guaranteed to have the same memory
// layout, original vector is not dropped
unsafe {
let mut value = mem::ManuallyDrop::new(value);
Vec::from_raw_parts(
value.as_mut_ptr() as *mut FsFr,
value.len(),
value.capacity(),
)
}
}
/// Convenient conversion from vector of underlying representation to scalar for efficiency
/// purposes.
#[inline]
pub fn vec_from_repr(value: Vec<FsFr>) -> Vec<Self> {
// SAFETY: `Scalar` is `#[repr(transparent)]` and guaranteed to have the same memory
// layout, original vector is not dropped
unsafe {
let mut value = mem::ManuallyDrop::new(value);
Vec::from_raw_parts(
value.as_mut_ptr() as *mut Self,
value.len(),
value.capacity(),
)
}
}
/// Convenient conversion from vector of optional scalar to underlying representation for
/// efficiency purposes.
#[inline]
pub fn vec_option_to_repr(value: Vec<Option<Self>>) -> Vec<Option<FsFr>> {
// SAFETY: `Scalar` is `#[repr(transparent)]` containing `#[repr(C)]` and we assume the
// compiler lays out optional `repr(C)` plain old data arrays the same as their optional
// transparent wrappers, original vector is not dropped
unsafe {
let mut value = mem::ManuallyDrop::new(value);
Vec::from_raw_parts(
value.as_mut_ptr() as *mut Option<FsFr>,
value.len(),
value.capacity(),
)
}
}
/// Convenient conversion from vector of optional underlying representation to scalar for
/// efficiency purposes.
#[inline]
pub fn vec_option_from_repr(value: Vec<Option<FsFr>>) -> Vec<Option<Self>> {
// SAFETY: `Scalar` is `#[repr(transparent)]` containing `#[repr(C)]` and we assume the
// compiler lays out optional `repr(C)` plain old data arrays the same as their optional
// transparent wrappers, original vector is not dropped
unsafe {
let mut value = mem::ManuallyDrop::new(value);
Vec::from_raw_parts(
value.as_mut_ptr() as *mut Option<Self>,
value.len(),
value.capacity(),
)
}
}
}
/// Commitment to polynomial
#[derive(Debug, Default, Copy, Clone, PartialEq, Eq, From, Into, AsRef, AsMut, Deref, DerefMut)]
#[repr(transparent)]
pub struct Commitment(FsG1);
const_assert_eq!(
mem::size_of::<Option<Commitment>>(),
mem::size_of::<Option<FsG1>>()
);
const_assert_eq!(
mem::align_of::<Option<Commitment>>(),
mem::align_of::<Option<FsG1>>()
);
impl Commitment {
/// Commitment size in bytes.
const SIZE: usize = 48;
/// Convert commitment to raw bytes
#[inline]
pub fn to_bytes(&self) -> [u8; Self::SIZE] {
self.0.to_bytes()
}
/// Try to deserialize commitment from raw bytes
#[inline]
pub fn try_from_bytes(bytes: &[u8; Self::SIZE]) -> Result<Self, String> {
Ok(Commitment(FsG1::from_bytes(bytes)?))
}
/// Convenient conversion from slice of commitment to underlying representation for efficiency
/// purposes.
#[inline]
pub fn slice_to_repr(value: &[Self]) -> &[FsG1] {
// SAFETY: `Commitment` is `#[repr(transparent)]` and guaranteed to have the same memory
// layout
unsafe { mem::transmute(value) }
}
/// Convenient conversion from slice of underlying representation to commitment for efficiency
/// purposes.
#[inline]
pub fn slice_from_repr(value: &[FsG1]) -> &[Self] {
// SAFETY: `Commitment` is `#[repr(transparent)]` and guaranteed to have the same memory
// layout
unsafe { mem::transmute(value) }
}
/// Convenient conversion from slice of optional commitment to underlying representation for
/// efficiency purposes.
#[inline]
pub fn slice_option_to_repr(value: &[Option<Self>]) -> &[Option<FsG1>] {
// SAFETY: `Commitment` is `#[repr(transparent)]` containing `#[repr(C)]` and we assume the
// compiler lays out optional `repr(C)` plain old data arrays the same as their optional
// transparent wrappers
unsafe { mem::transmute(value) }
}
/// Convenient conversion from slice of optional underlying representation to commitment for
/// efficiency purposes.
#[inline]
pub fn slice_option_from_repr(value: &[Option<FsG1>]) -> &[Option<Self>] {
// SAFETY: `Commitment` is `#[repr(transparent)]` containing `#[repr(C)]` and we assume the
// compiler lays out optional `repr(C)` plain old data arrays the same as their optional
// transparent wrappers
unsafe { mem::transmute(value) }
}
/// Convenient conversion from mutable slice of commitment to underlying representation for
/// efficiency purposes.
#[inline]
pub fn slice_mut_to_repr(value: &mut [Self]) -> &mut [FsG1] {
// SAFETY: `Commitment` is `#[repr(transparent)]` and guaranteed to have the same memory
// layout
unsafe { mem::transmute(value) }
}
/// Convenient conversion from mutable slice of underlying representation to commitment for
/// efficiency purposes.
#[inline]
pub fn slice_mut_from_repr(value: &mut [FsG1]) -> &mut [Self] {
// SAFETY: `Commitment` is `#[repr(transparent)]` and guaranteed to have the same memory
// layout
unsafe { mem::transmute(value) }
}
/// Convenient conversion from optional mutable slice of commitment to underlying representation
/// for efficiency purposes.
#[inline]
pub fn slice_option_mut_to_repr(value: &mut [Option<Self>]) -> &mut [Option<FsG1>] {
// SAFETY: `Commitment` is `#[repr(transparent)]` containing `#[repr(C)]` and we assume the
// compiler lays out optional `repr(C)` plain old data arrays the same as their optional
// transparent wrappers
unsafe { mem::transmute(value) }
}
/// Convenient conversion from optional mutable slice of underlying representation to commitment
/// for efficiency purposes.
#[inline]
pub fn slice_option_mut_from_repr(value: &mut [Option<FsG1>]) -> &mut [Option<Self>] {
// SAFETY: `Commitment` is `#[repr(transparent)]` containing `#[repr(C)]` and we assume the
// compiler lays out optional `repr(C)` plain old data arrays the same as their optional
// transparent wrappers
unsafe { mem::transmute(value) }
}
/// Convenient conversion from vector of commitment to underlying representation for efficiency
/// purposes.
#[inline]
pub fn vec_to_repr(value: Vec<Self>) -> Vec<FsG1> {
// SAFETY: `Commitment` is `#[repr(transparent)]` and guaranteed to have the same memory
// layout, original vector is not dropped
unsafe {
let mut value = mem::ManuallyDrop::new(value);
Vec::from_raw_parts(
value.as_mut_ptr() as *mut FsG1,
value.len(),
value.capacity(),
)
}
}
/// Convenient conversion from vector of underlying representation to commitment for efficiency
/// purposes.
#[inline]
pub fn vec_from_repr(value: Vec<FsG1>) -> Vec<Self> {
// SAFETY: `Commitment` is `#[repr(transparent)]` and guaranteed to have the same memory
// layout, original vector is not dropped
unsafe {
let mut value = mem::ManuallyDrop::new(value);
Vec::from_raw_parts(
value.as_mut_ptr() as *mut Self,
value.len(),
value.capacity(),
)
}
}
/// Convenient conversion from vector of optional commitment to underlying representation for
/// efficiency purposes.
#[inline]
pub fn vec_option_to_repr(value: Vec<Option<Self>>) -> Vec<Option<FsG1>> {
// SAFETY: `Commitment` is `#[repr(transparent)]` containing `#[repr(C)]` and we assume the
// compiler lays out optional `repr(C)` plain old data arrays the same as their optional
// transparent wrappers, original vector is not dropped
unsafe {
let mut value = mem::ManuallyDrop::new(value);
Vec::from_raw_parts(
value.as_mut_ptr() as *mut Option<FsG1>,
value.len(),
value.capacity(),
)
}
}
/// Convenient conversion from vector of optional underlying representation to commitment for
/// efficiency purposes.
#[inline]
pub fn vec_option_from_repr(value: Vec<Option<FsG1>>) -> Vec<Option<Self>> {
// SAFETY: `Commitment` is `#[repr(transparent)]` containing `#[repr(C)]` and we assume the
// compiler lays out optional `repr(C)` plain old data arrays the same as their optional
// transparent wrappers, original vector is not dropped
unsafe {
let mut value = mem::ManuallyDrop::new(value);
Vec::from_raw_parts(
value.as_mut_ptr() as *mut Option<Self>,
value.len(),
value.capacity(),
)
}
}
}
impl From<Commitment> for RecordCommitment {
#[inline]
fn from(commitment: Commitment) -> Self {
RecordCommitment::from(commitment.to_bytes())
}
}
impl TryFrom<&RecordCommitment> for Commitment {
type Error = String;
#[inline]
fn try_from(commitment: &RecordCommitment) -> Result<Self, Self::Error> {
Commitment::try_from(**commitment)
}
}
impl TryFrom<RecordCommitment> for Commitment {
type Error = String;
#[inline]
fn try_from(commitment: RecordCommitment) -> Result<Self, Self::Error> {
Commitment::try_from(&commitment)
}
}
impl From<Commitment> for SegmentCommitment {
#[inline]
fn from(commitment: Commitment) -> Self {
SegmentCommitment::from(commitment.to_bytes())
}
}
impl TryFrom<&SegmentCommitment> for Commitment {
type Error = String;
#[inline]
fn try_from(commitment: &SegmentCommitment) -> Result<Self, Self::Error> {
Commitment::try_from(**commitment)
}
}
impl TryFrom<SegmentCommitment> for Commitment {
type Error = String;
#[inline]
fn try_from(commitment: SegmentCommitment) -> Result<Self, Self::Error> {
Commitment::try_from(&commitment)
}
}
impl From<Commitment> for [u8; Commitment::SIZE] {
#[inline]
fn from(commitment: Commitment) -> Self {
commitment.to_bytes()
}
}
impl From<&Commitment> for [u8; Commitment::SIZE] {
#[inline]
fn from(commitment: &Commitment) -> Self {
commitment.to_bytes()
}
}
impl TryFrom<&[u8; Self::SIZE]> for Commitment {
type Error = String;
#[inline]
fn try_from(bytes: &[u8; Self::SIZE]) -> Result<Self, Self::Error> {
Self::try_from_bytes(bytes)
}
}
impl TryFrom<[u8; Self::SIZE]> for Commitment {
type Error = String;
#[inline]
fn try_from(bytes: [u8; Self::SIZE]) -> Result<Self, Self::Error> {
Self::try_from(&bytes)
}
}
/// Witness for polynomial evaluation
#[derive(Debug, Default, Copy, Clone, PartialEq, Eq, From, Into, AsRef, AsMut, Deref, DerefMut)]
#[repr(transparent)]
pub struct Witness(FsG1);
impl Witness {
/// Commitment size in bytes.
const SIZE: usize = 48;
/// Convert witness to raw bytes
pub fn to_bytes(&self) -> [u8; Self::SIZE] {
self.0.to_bytes()
}
/// Try to deserialize witness from raw bytes
pub fn try_from_bytes(bytes: &[u8; Self::SIZE]) -> Result<Self, String> {
Ok(Witness(FsG1::from_bytes(bytes)?))
}
}
impl From<Witness> for RecordWitness {
#[inline]
fn from(witness: Witness) -> Self {
RecordWitness::from(witness.to_bytes())
}
}
impl TryFrom<&RecordWitness> for Witness {
type Error = String;
#[inline]
fn try_from(witness: &RecordWitness) -> Result<Self, Self::Error> {
Witness::try_from(**witness)
}
}
impl TryFrom<RecordWitness> for Witness {
type Error = String;
#[inline]
fn try_from(witness: RecordWitness) -> Result<Self, Self::Error> {
Witness::try_from(&witness)
}
}
impl From<Witness> for ChunkWitness {
#[inline]
fn from(witness: Witness) -> Self {
ChunkWitness::from(witness.to_bytes())
}
}
impl TryFrom<&ChunkWitness> for Witness {
type Error = String;
#[inline]
fn try_from(witness: &ChunkWitness) -> Result<Self, Self::Error> {
Witness::try_from(**witness)
}
}
impl TryFrom<ChunkWitness> for Witness {
type Error = String;
#[inline]
fn try_from(witness: ChunkWitness) -> Result<Self, Self::Error> {
Witness::try_from(&witness)
}
}
impl From<Witness> for [u8; Witness::SIZE] {
#[inline]
fn from(witness: Witness) -> Self {
witness.to_bytes()
}
}
impl From<&Witness> for [u8; Witness::SIZE] {
#[inline]
fn from(witness: &Witness) -> Self {
witness.to_bytes()
}
}
impl TryFrom<&[u8; Self::SIZE]> for Witness {
type Error = String;
#[inline]
fn try_from(bytes: &[u8; Self::SIZE]) -> Result<Self, Self::Error> {
Self::try_from_bytes(bytes)
}
}
impl TryFrom<[u8; Self::SIZE]> for Witness {
type Error = String;
#[inline]
fn try_from(bytes: [u8; Self::SIZE]) -> Result<Self, Self::Error> {
Self::try_from(&bytes)
}
}
#[derive(Debug)]
struct Inner {
kzg_settings: FsKZGSettings,
fft_settings_cache: Mutex<BTreeMap<usize, Arc<FsFFTSettings>>>,
}
/// Wrapper data structure for working with KZG commitment scheme
#[derive(Debug, Clone)]
pub struct Kzg {
inner: Arc<Inner>,
}
impl Kzg {
/// Create new instance with embedded KZG settings.
///
/// NOTE: Prefer cloning to instantiation since cloning is cheap and instantiation is not!
#[expect(
clippy::new_without_default,
reason = "Default must not be implemented, because Kzg should be cloned instead. Cloning is cheap and instantiation is not."
)]
pub fn new() -> Self {
let kzg_settings =
bytes_to_kzg_settings(EMBEDDED_KZG_SETTINGS_BYTES, NUM_G1_POWERS, NUM_G2_POWERS)
.expect("Static bytes are correct, there is a test for this; qed");
let inner = Arc::new(Inner {
kzg_settings,
fft_settings_cache: Mutex::default(),
});
Self { inner }
}
/// Create polynomial from data. Data must be multiple of 32 bytes, each containing up to 254
/// bits of information.
///
/// The resulting polynomial is in coefficient form.
pub fn poly(&self, data: &[Scalar]) -> Result<Polynomial, String> {
let poly = FsPoly {
coeffs: self
.get_fft_settings(data.len())?
.fft_fr(Scalar::slice_to_repr(data), true)?,
};
Ok(Polynomial(poly))
}
/// Computes a `Commitment` to `polynomial`
pub fn commit(&self, polynomial: &Polynomial) -> Result<Commitment, String> {
self.inner
.kzg_settings
.commit_to_poly(&polynomial.0)
.map(Commitment)
}
/// Computes a `Witness` of evaluation of `polynomial` at `index`
pub fn create_witness(
&self,
polynomial: &Polynomial,
num_values: usize,
index: u32,
) -> Result<Witness, String> {
let x = self
.get_fft_settings(num_values)?
.get_expanded_roots_of_unity_at(index as usize);
self.inner
.kzg_settings
.compute_proof_single(&polynomial.0, &x)
.map(Witness)
}
/// Verifies that `value` is the evaluation at `index` of the polynomial created from
/// `num_values` values matching the `commitment`.
pub fn verify(
&self,
commitment: &Commitment,
num_values: usize,
index: u32,
value: &Scalar,
witness: &Witness,
) -> bool {
let fft_settings = match self.get_fft_settings(num_values) {
Ok(fft_settings) => fft_settings,
Err(error) => {
debug!(error, "Failed to derive fft settings");
return false;
}
};
let x = fft_settings.get_expanded_roots_of_unity_at(index as usize);
match self
.inner
.kzg_settings
.check_proof_single(&commitment.0, &witness.0, &x, value)
{
Ok(result) => result,
Err(error) => {
debug!(error, "Failed to check proof");
false
}
}
}
/// Get FFT settings for specified number of values, uses internal cache to avoid derivation
/// every time.
fn get_fft_settings(&self, num_values: usize) -> Result<Arc<FsFFTSettings>, String> {
let num_values = num_values.next_power_of_two();
Ok(
match self.inner.fft_settings_cache.lock().entry(num_values) {
Entry::Vacant(entry) => {
let fft_settings = Arc::new(FsFFTSettings::new(num_values.ilog2() as usize)?);
entry.insert(Arc::clone(&fft_settings));
fft_settings
}
Entry::Occupied(entry) => Arc::clone(entry.get()),
},
)
}
}