subspace_farmer_components/
plotting.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
//! Plotting utilities
//!
//! This module contains functions and data structures that can be used for plotting purposes
//! (primarily with CPU).
//!
//! Plotted sectors can be written to plot and later [`read`](crate::reading) and/or
//! [`audited`](crate::auditing)/[`proven`](crate::proving) using other modules of this crate.

use crate::sector::{
    sector_record_chunks_size, sector_size, EncodedChunksUsed, RawSector, RecordMetadata,
    SectorContentsMap, SectorMetadata, SectorMetadataChecksummed,
};
use crate::segment_reconstruction::recover_missing_piece;
use crate::FarmerProtocolInfo;
use async_lock::{Mutex as AsyncMutex, Semaphore};
use backoff::future::retry;
use backoff::{Error as BackoffError, ExponentialBackoff};
use futures::stream::FuturesUnordered;
use futures::{select, StreamExt};
use parity_scale_codec::{Decode, Encode};
use parking_lot::Mutex;
use rayon::prelude::*;
use std::collections::HashMap;
use std::simd::Simd;
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::Arc;
use std::time::Duration;
use subspace_core_primitives::hashes::{blake3_hash, blake3_hash_parallel, Blake3Hash};
use subspace_core_primitives::pieces::{Piece, PieceIndex, PieceOffset, Record};
use subspace_core_primitives::pos::PosSeed;
use subspace_core_primitives::sectors::{SBucket, SectorId, SectorIndex};
use subspace_core_primitives::segments::HistorySize;
use subspace_core_primitives::{PublicKey, ScalarBytes};
use subspace_data_retrieval::piece_getter::PieceGetter;
use subspace_erasure_coding::ErasureCoding;
use subspace_kzg::{Kzg, Scalar};
use subspace_proof_of_space::{Table, TableGenerator};
use thiserror::Error;
use tracing::{debug, trace, warn};

const RECONSTRUCTION_CONCURRENCY_LIMIT: usize = 1;

fn default_backoff() -> ExponentialBackoff {
    ExponentialBackoff {
        initial_interval: Duration::from_secs(15),
        max_interval: Duration::from_secs(10 * 60),
        // Try until we get a valid piece
        max_elapsed_time: None,
        ..ExponentialBackoff::default()
    }
}

/// Information about sector that was plotted
#[derive(Debug, Clone, Encode, Decode)]
pub struct PlottedSector {
    /// Sector ID
    pub sector_id: SectorId,
    /// Sector index
    pub sector_index: SectorIndex,
    /// Sector metadata
    pub sector_metadata: SectorMetadataChecksummed,
    /// Indexes of pieces that were plotted
    pub piece_indexes: Vec<PieceIndex>,
}

/// Plotting status
#[derive(Debug, Error)]
pub enum PlottingError {
    /// Records encoder error
    #[error("Records encoder error: {error}")]
    RecordsEncoderError {
        /// Lower-level error
        error: anyhow::Error,
    },
    /// Bad sector output size
    #[error("Bad sector output size: provided {provided}, expected {expected}")]
    BadSectorOutputSize {
        /// Actual size
        provided: usize,
        /// Expected size
        expected: usize,
    },
    /// Can't recover missing piece
    #[error("Can't recover missing piece {piece_index}: {error}")]
    PieceRecoveryFailed {
        /// Piece index
        piece_index: PieceIndex,
        /// Lower-level error
        error: anyhow::Error,
    },
    /// Failed to retrieve piece
    #[error("Failed to retrieve pieces: {error}")]
    FailedToRetrievePieces {
        /// Lower-level error
        error: anyhow::Error,
    },
    /// Abort early
    #[error("Abort early")]
    AbortEarly,
}

/// Options for plotting a sector.
///
/// Sector output and sector metadata output should be either empty (in which case they'll be
/// resized to correct size automatically) or correctly sized from the beginning or else error will
/// be returned.
#[derive(Debug)]
pub struct PlotSectorOptions<'a, RE, PG> {
    /// Public key corresponding to sector
    pub public_key: &'a PublicKey,
    /// Sector index
    pub sector_index: SectorIndex,
    /// Getter for pieces of archival history
    pub piece_getter: &'a PG,
    /// Farmer protocol info
    pub farmer_protocol_info: FarmerProtocolInfo,
    /// KZG instance
    pub kzg: &'a Kzg,
    /// Erasure coding instance
    pub erasure_coding: &'a ErasureCoding,
    /// How many pieces should sector contain
    pub pieces_in_sector: u16,
    /// Where plotted sector should be written, vector must either be empty (in which case it'll be
    /// resized to correct size automatically) or correctly sized from the beginning
    pub sector_output: &'a mut Vec<u8>,
    /// Semaphore for part of the plotting when farmer downloads new sector, allows to limit memory
    /// usage of the plotting process, permit will be held until the end of the plotting process
    pub downloading_semaphore: Option<Arc<Semaphore>>,
    /// Semaphore for part of the plotting when farmer encodes downloaded sector, should typically
    /// allow one permit at a time for efficient CPU utilization
    pub encoding_semaphore: Option<&'a Semaphore>,
    /// Proof of space table generators
    pub records_encoder: &'a mut RE,
    /// Whether encoding should be aborted early
    pub abort_early: &'a AtomicBool,
}

/// Plot a single sector.
///
/// This is a convenient wrapper around [`download_sector`] and [`encode_sector`] functions.
///
/// NOTE: Even though this function is async, it has blocking code inside and must be running in a
/// separate thread in order to prevent blocking an executor.
pub async fn plot_sector<RE, PG>(
    options: PlotSectorOptions<'_, RE, PG>,
) -> Result<PlottedSector, PlottingError>
where
    RE: RecordsEncoder,
    PG: PieceGetter + Send + Sync,
{
    let PlotSectorOptions {
        public_key,
        sector_index,
        piece_getter,
        farmer_protocol_info,
        kzg,
        erasure_coding,
        pieces_in_sector,
        sector_output,
        downloading_semaphore,
        encoding_semaphore,
        records_encoder,
        abort_early,
    } = options;

    let _downloading_permit = match downloading_semaphore {
        Some(downloading_semaphore) => Some(downloading_semaphore.acquire_arc().await),
        None => None,
    };

    let download_sector_fut = download_sector(DownloadSectorOptions {
        public_key,
        sector_index,
        piece_getter,
        farmer_protocol_info,
        kzg,
        erasure_coding,
        pieces_in_sector,
    });

    let _encoding_permit = match encoding_semaphore {
        Some(encoding_semaphore) => Some(encoding_semaphore.acquire().await),
        None => None,
    };

    let encoded_sector = encode_sector(
        download_sector_fut.await?,
        EncodeSectorOptions::<RE> {
            sector_index,
            records_encoder,
            abort_early,
        },
    )?;

    if abort_early.load(Ordering::Acquire) {
        return Err(PlottingError::AbortEarly);
    }

    write_sector(&encoded_sector, sector_output)?;

    Ok(encoded_sector.plotted_sector)
}

/// Opaque sector downloading result and ready for writing
#[derive(Debug)]
pub struct DownloadedSector {
    sector_id: SectorId,
    piece_indices: Vec<PieceIndex>,
    raw_sector: RawSector,
    history_size: HistorySize,
}

/// Options for sector downloading
#[derive(Debug)]
pub struct DownloadSectorOptions<'a, PG> {
    /// Public key corresponding to sector
    pub public_key: &'a PublicKey,
    /// Sector index
    pub sector_index: SectorIndex,
    /// Getter for pieces of archival history
    pub piece_getter: &'a PG,
    /// Farmer protocol info
    pub farmer_protocol_info: FarmerProtocolInfo,
    /// KZG instance
    pub kzg: &'a Kzg,
    /// Erasure coding instance
    pub erasure_coding: &'a ErasureCoding,
    /// How many pieces should sector contain
    pub pieces_in_sector: u16,
}

/// Download sector for plotting.
///
/// This will identify necessary pieces and download them using provided piece getter, after which
/// they can be encoded using [`encode_sector`] and written to the plot.
pub async fn download_sector<PG>(
    options: DownloadSectorOptions<'_, PG>,
) -> Result<DownloadedSector, PlottingError>
where
    PG: PieceGetter + Send + Sync,
{
    let DownloadSectorOptions {
        public_key,
        sector_index,
        piece_getter,
        farmer_protocol_info,
        kzg,
        erasure_coding,
        pieces_in_sector,
    } = options;

    let sector_id = SectorId::new(
        public_key.hash(),
        sector_index,
        farmer_protocol_info.history_size,
    );

    let piece_indices = (PieceOffset::ZERO..)
        .take(pieces_in_sector.into())
        .map(|piece_offset| {
            sector_id.derive_piece_index(
                piece_offset,
                farmer_protocol_info.history_size,
                farmer_protocol_info.max_pieces_in_sector,
                farmer_protocol_info.recent_segments,
                farmer_protocol_info.recent_history_fraction,
            )
        })
        .collect::<Vec<_>>();

    let raw_sector = {
        let mut raw_sector = RawSector::new(pieces_in_sector);
        let mut pieces_to_download =
            HashMap::<PieceIndex, Vec<_>>::with_capacity(usize::from(pieces_in_sector));
        for (piece_index, (record, metadata)) in piece_indices
            .iter()
            .copied()
            .zip(raw_sector.records.iter_mut().zip(&mut raw_sector.metadata))
        {
            pieces_to_download
                .entry(piece_index)
                .or_default()
                .push((record, metadata));
        }
        // This map will be mutated, removing piece indices we have already processed
        let pieces_to_download = AsyncMutex::new(pieces_to_download);

        retry(default_backoff(), || async {
            let mut pieces_to_download = pieces_to_download.lock().await;

            if let Err(error) =
                download_sector_internal(&mut pieces_to_download, piece_getter, kzg, erasure_coding)
                    .await
            {
                warn!(
                    %sector_index,
                    %error,
                    %pieces_in_sector,
                    remaining_pieces = %pieces_to_download.len(),
                    "Sector downloading attempt failed, will retry later"
                );

                return Err(BackoffError::transient(error));
            }

            debug!(%sector_index, "Sector downloaded successfully");

            Ok(())
        })
        .await?;

        raw_sector
    };

    Ok(DownloadedSector {
        sector_id,
        piece_indices,
        raw_sector,
        history_size: farmer_protocol_info.history_size,
    })
}

/// Records encoder for plotting purposes
pub trait RecordsEncoder {
    /// Encode provided sector records
    fn encode_records(
        &mut self,
        sector_id: &SectorId,
        records: &mut [Record],
        abort_early: &AtomicBool,
    ) -> anyhow::Result<SectorContentsMap>;
}

/// CPU implementation of [`RecordsEncoder`]
#[derive(Debug)]
pub struct CpuRecordsEncoder<'a, PosTable>
where
    PosTable: Table,
{
    table_generators: &'a mut [PosTable::Generator],
    erasure_coding: &'a ErasureCoding,
    global_mutex: &'a AsyncMutex<()>,
}

impl<PosTable> RecordsEncoder for CpuRecordsEncoder<'_, PosTable>
where
    PosTable: Table,
{
    fn encode_records(
        &mut self,
        sector_id: &SectorId,
        records: &mut [Record],
        abort_early: &AtomicBool,
    ) -> anyhow::Result<SectorContentsMap> {
        if self.erasure_coding.max_shards() < Record::NUM_S_BUCKETS {
            return Err(anyhow::anyhow!(
                "Invalid erasure coding instance: {} shards needed, {} supported",
                Record::NUM_S_BUCKETS,
                self.erasure_coding.max_shards()
            ));
        }

        if self.table_generators.is_empty() {
            return Err(anyhow::anyhow!("No table generators"));
        }

        let pieces_in_sector = records
            .len()
            .try_into()
            .map_err(|error| anyhow::anyhow!("Failed to convert pieces in sector: {error}"))?;
        let mut sector_contents_map = SectorContentsMap::new(pieces_in_sector);

        {
            let table_generators = &mut *self.table_generators;
            let global_mutex = self.global_mutex;
            let erasure_coding = self.erasure_coding;

            let iter = Mutex::new(
                (PieceOffset::ZERO..)
                    .zip(records.iter_mut())
                    .zip(sector_contents_map.iter_record_bitfields_mut()),
            );

            rayon::scope(|scope| {
                for table_generator in table_generators {
                    scope.spawn(|_scope| {
                        let mut chunks_scratch = Vec::with_capacity(Record::NUM_S_BUCKETS);

                        loop {
                            // Take mutex briefly to make sure encoding is allowed right now
                            global_mutex.lock_blocking();

                            // This instead of `while` above because otherwise mutex will be held
                            // for the duration of the loop and will limit concurrency to 1 record
                            let Some(((piece_offset, record), encoded_chunks_used)) =
                                iter.lock().next()
                            else {
                                return;
                            };
                            let pos_seed = sector_id.derive_evaluation_seed(piece_offset);

                            record_encoding::<PosTable>(
                                &pos_seed,
                                record,
                                encoded_chunks_used,
                                table_generator,
                                erasure_coding,
                                &mut chunks_scratch,
                            );

                            if abort_early.load(Ordering::Relaxed) {
                                return;
                            }
                        }
                    });
                }
            });
        }

        Ok(sector_contents_map)
    }
}

impl<'a, PosTable> CpuRecordsEncoder<'a, PosTable>
where
    PosTable: Table,
{
    /// Create new instance
    pub fn new(
        table_generators: &'a mut [PosTable::Generator],
        erasure_coding: &'a ErasureCoding,
        global_mutex: &'a AsyncMutex<()>,
    ) -> Self {
        Self {
            table_generators,
            erasure_coding,
            global_mutex,
        }
    }
}

/// Options for encoding a sector.
///
/// Sector output and sector metadata output should be either empty (in which case they'll be
/// resized to correct size automatically) or correctly sized from the beginning or else error will
/// be returned.
#[derive(Debug)]
pub struct EncodeSectorOptions<'a, RE>
where
    RE: RecordsEncoder,
{
    /// Sector index
    pub sector_index: SectorIndex,
    /// Records encoding instance
    pub records_encoder: &'a mut RE,
    /// Whether encoding should be aborted early
    pub abort_early: &'a AtomicBool,
}

/// Mostly opaque sector encoding result ready for writing
#[derive(Debug)]
pub struct EncodedSector {
    /// Information about sector that was plotted
    pub plotted_sector: PlottedSector,
    raw_sector: RawSector,
    sector_contents_map: SectorContentsMap,
}

/// Encode downloaded sector.
///
/// This function encodes downloaded sector records and returns sector encoding result that can be
/// written using [`write_sector`].
pub fn encode_sector<RE>(
    downloaded_sector: DownloadedSector,
    encoding_options: EncodeSectorOptions<'_, RE>,
) -> Result<EncodedSector, PlottingError>
where
    RE: RecordsEncoder,
{
    let DownloadedSector {
        sector_id,
        piece_indices,
        mut raw_sector,
        history_size,
    } = downloaded_sector;
    let EncodeSectorOptions {
        sector_index,
        records_encoder,
        abort_early,
    } = encoding_options;

    let pieces_in_sector = raw_sector.records.len().try_into().expect(
        "Raw sector can only be created in this crate and it is always done correctly; qed",
    );

    let sector_contents_map = records_encoder
        .encode_records(&sector_id, &mut raw_sector.records, abort_early)
        .map_err(|error| PlottingError::RecordsEncoderError { error })?;

    let sector_metadata = SectorMetadataChecksummed::from(SectorMetadata {
        sector_index,
        pieces_in_sector,
        s_bucket_sizes: sector_contents_map.s_bucket_sizes(),
        history_size,
    });

    Ok(EncodedSector {
        plotted_sector: PlottedSector {
            sector_id,
            sector_index,
            sector_metadata,
            piece_indexes: piece_indices,
        },
        raw_sector,
        sector_contents_map,
    })
}

/// Write encoded sector into sector output
pub fn write_sector(
    encoded_sector: &EncodedSector,
    sector_output: &mut Vec<u8>,
) -> Result<(), PlottingError> {
    let EncodedSector {
        plotted_sector: _,
        raw_sector,
        sector_contents_map,
    } = encoded_sector;

    let pieces_in_sector = raw_sector.records.len().try_into().expect(
        "Raw sector can only be created in this crate and it is always done correctly; qed",
    );

    let sector_size = sector_size(pieces_in_sector);

    if !sector_output.is_empty() && sector_output.len() != sector_size {
        return Err(PlottingError::BadSectorOutputSize {
            provided: sector_output.len(),
            expected: sector_size,
        });
    }

    sector_output.resize(sector_size, 0);

    // Write sector to disk in form of following regions:
    // * sector contents map
    // * record chunks as s-buckets
    // * record metadata
    // * checksum
    {
        let (sector_contents_map_region, remaining_bytes) =
            sector_output.split_at_mut(SectorContentsMap::encoded_size(pieces_in_sector));
        // Slice remaining memory into belonging to s-buckets and metadata
        let (s_buckets_region, metadata_region) =
            remaining_bytes.split_at_mut(sector_record_chunks_size(pieces_in_sector));

        // Write sector contents map so we can decode it later
        sector_contents_map
            .encode_into(sector_contents_map_region)
            .expect("Chunked into correct size above; qed");

        let num_encoded_record_chunks = sector_contents_map.num_encoded_record_chunks();
        let mut next_encoded_record_chunks_offset = vec![0_usize; pieces_in_sector.into()];
        let mut next_unencoded_record_chunks_offset = vec![0_usize; pieces_in_sector.into()];
        // Write record chunks, one s-bucket at a time
        for ((piece_offset, encoded_chunk_used), output) in (SBucket::ZERO..=SBucket::MAX)
            .flat_map(|s_bucket| {
                sector_contents_map
                    .iter_s_bucket_records(s_bucket)
                    .expect("S-bucket guaranteed to be in range; qed")
            })
            .zip(s_buckets_region.array_chunks_mut::<{ ScalarBytes::FULL_BYTES }>())
        {
            let num_encoded_record_chunks =
                usize::from(num_encoded_record_chunks[usize::from(piece_offset)]);
            let next_encoded_record_chunks_offset =
                &mut next_encoded_record_chunks_offset[usize::from(piece_offset)];
            let next_unencoded_record_chunks_offset =
                &mut next_unencoded_record_chunks_offset[usize::from(piece_offset)];

            // We know that s-buckets in `raw_sector.records` are stored in order (encoded first,
            // then unencoded), hence we don't need to calculate the position, we can just store a
            // few cursors and know the position that way
            let chunk_position;
            if encoded_chunk_used {
                chunk_position = *next_encoded_record_chunks_offset;
                *next_encoded_record_chunks_offset += 1;
            } else {
                chunk_position = num_encoded_record_chunks + *next_unencoded_record_chunks_offset;
                *next_unencoded_record_chunks_offset += 1;
            }
            output.copy_from_slice(&raw_sector.records[usize::from(piece_offset)][chunk_position]);
        }

        let metadata_chunks =
            metadata_region.array_chunks_mut::<{ RecordMetadata::encoded_size() }>();
        for (record_metadata, output) in raw_sector.metadata.iter().zip(metadata_chunks) {
            record_metadata.encode_to(&mut output.as_mut_slice());
        }

        // It would be more efficient to not re-read the whole sector again, but it makes above code
        // significantly more convoluted and most likely not worth it
        let (sector_contents, sector_checksum) =
            sector_output.split_at_mut(sector_size - Blake3Hash::SIZE);
        sector_checksum.copy_from_slice(blake3_hash_parallel(sector_contents).as_ref());
    }

    Ok(())
}

fn record_encoding<PosTable>(
    pos_seed: &PosSeed,
    record: &mut Record,
    mut encoded_chunks_used: EncodedChunksUsed<'_>,
    table_generator: &mut PosTable::Generator,
    erasure_coding: &ErasureCoding,
    chunks_scratch: &mut Vec<[u8; ScalarBytes::FULL_BYTES]>,
) where
    PosTable: Table,
{
    // Derive PoSpace table
    let pos_table = table_generator.generate_parallel(pos_seed);

    // Erasure code source record chunks
    let parity_record_chunks = erasure_coding
        .extend(
            &record
                .iter()
                .map(|scalar_bytes| {
                    Scalar::try_from(scalar_bytes).expect(
                        "Piece getter must returns valid pieces of history that contain \
                        proper scalar bytes; qed",
                    )
                })
                .collect::<Vec<_>>(),
        )
        .expect("Instance was verified to be able to work with this many values earlier; qed")
        .into_iter()
        .map(<[u8; ScalarBytes::FULL_BYTES]>::from)
        .collect::<Vec<_>>();
    let source_record_chunks = record.to_vec();

    chunks_scratch.clear();
    // For every erasure coded chunk check if there is proof present, if so then encode
    // with PoSpace proof bytes and set corresponding `encoded_chunks_used` bit to `true`
    (u16::from(SBucket::ZERO)..=u16::from(SBucket::MAX))
        .into_par_iter()
        .map(SBucket::from)
        .zip(
            source_record_chunks
                .par_iter()
                .interleave(&parity_record_chunks),
        )
        .map(|(s_bucket, record_chunk)| {
            if let Some(proof) = pos_table.find_proof(s_bucket.into()) {
                (Simd::from(*record_chunk) ^ Simd::from(*proof.hash())).to_array()
            } else {
                // Dummy value indicating no proof
                [0; ScalarBytes::FULL_BYTES]
            }
        })
        .collect_into_vec(chunks_scratch);
    let num_successfully_encoded_chunks = chunks_scratch
        .drain(..)
        .zip(encoded_chunks_used.iter_mut())
        .filter_map(|(maybe_encoded_chunk, mut encoded_chunk_used)| {
            // No proof, see above
            if maybe_encoded_chunk == [0; ScalarBytes::FULL_BYTES] {
                None
            } else {
                *encoded_chunk_used = true;

                Some(maybe_encoded_chunk)
            }
        })
        // Make sure above filter function (and corresponding `encoded_chunk_used` update)
        // happen at most as many times as there is number of chunks in the record,
        // otherwise `n+1` iterations could happen and update extra `encoded_chunk_used`
        // unnecessarily causing issues down the line
        .take(record.len())
        .zip(record.iter_mut())
        // Write encoded chunk back so we can reuse original allocation
        .map(|(input_chunk, output_chunk)| {
            *output_chunk = input_chunk;
        })
        .count();

    // In some cases there is not enough PoSpace proofs available, in which case we add
    // remaining number of unencoded erasure coded record chunks to the end
    source_record_chunks
        .iter()
        .zip(&parity_record_chunks)
        .flat_map(|(a, b)| [a, b])
        .zip(encoded_chunks_used.iter())
        // Skip chunks that were used previously
        .filter_map(|(record_chunk, encoded_chunk_used)| {
            if *encoded_chunk_used {
                None
            } else {
                Some(record_chunk)
            }
        })
        // First `num_successfully_encoded_chunks` chunks are encoded
        .zip(record.iter_mut().skip(num_successfully_encoded_chunks))
        // Write necessary number of unencoded chunks at the end
        .for_each(|(input_chunk, output_chunk)| {
            *output_chunk = *input_chunk;
        });
}

async fn download_sector_internal<PG>(
    pieces_to_download: &mut HashMap<PieceIndex, Vec<(&mut Record, &mut RecordMetadata)>>,
    piece_getter: &PG,
    kzg: &Kzg,
    erasure_coding: &ErasureCoding,
) -> Result<(), PlottingError>
where
    PG: PieceGetter + Send + Sync,
{
    // TODO: Make configurable, likely allowing user to specify RAM usage expectations and inferring
    //  concurrency from there
    let recovery_semaphore = &Semaphore::new(RECONSTRUCTION_CONCURRENCY_LIMIT);

    // Allocate to decouple lifetime from `pieces_to_download` that will be modified below
    let piece_indices = pieces_to_download.keys().copied().collect::<Vec<_>>();
    let mut downloaded_pieces = piece_getter
        .get_pieces(piece_indices)
        .await
        .map_err(|error| PlottingError::FailedToRetrievePieces { error })?
        .fuse();
    let mut reconstructed_pieces = FuturesUnordered::new();

    let mut final_result = Ok(());

    loop {
        let (piece_index, result) = select! {
            (piece_index, result) = downloaded_pieces.select_next_some() => {
                match result {
                    Ok(Some(piece)) => (piece_index, Ok(piece)),
                    Ok(None) => {
                        trace!(%piece_index, "Piece was not found, trying reconstruction");

                        reconstructed_pieces.push(reconstruct_piece(
                            piece_index,
                            recovery_semaphore,
                            piece_getter,
                            kzg,
                            erasure_coding,
                        ));
                        continue;
                    }
                    Err(error) => {
                        trace!(
                            %error,
                            %piece_index,
                            "Failed to download piece, trying reconstruction"
                        );

                        reconstructed_pieces.push(reconstruct_piece(
                            piece_index,
                            recovery_semaphore,
                            piece_getter,
                            kzg,
                            erasure_coding,
                        ));
                        continue;
                    }
                }
            },
            (piece_index, result) = reconstructed_pieces.select_next_some() => {
                (piece_index, result)
            },
            complete => {
                break;
            }
        };

        match result {
            Ok(piece) => {
                process_piece(piece_index, piece, pieces_to_download);
            }
            Err(error) => {
                trace!(%error, %piece_index, "Failed to download piece");

                if final_result.is_ok() {
                    final_result = Err(error);
                }
            }
        }
    }

    if final_result.is_ok() && !pieces_to_download.is_empty() {
        return Err(PlottingError::FailedToRetrievePieces {
            error: anyhow::anyhow!(
                "Successful result, but not all pieces were downloaded, this is likely a piece \
                getter implementation bug"
            ),
        });
    }

    final_result
}

async fn reconstruct_piece<PG>(
    piece_index: PieceIndex,
    recovery_semaphore: &Semaphore,
    piece_getter: &PG,
    kzg: &Kzg,
    erasure_coding: &ErasureCoding,
) -> (PieceIndex, Result<Piece, PlottingError>)
where
    PG: PieceGetter + Send + Sync,
{
    let _permit = recovery_semaphore.acquire().await;
    let recovered_piece_fut = recover_missing_piece(
        piece_getter,
        kzg.clone(),
        erasure_coding.clone(),
        piece_index,
    );

    (
        piece_index,
        recovered_piece_fut
            .await
            .map_err(|error| PlottingError::PieceRecoveryFailed {
                piece_index,
                error: error.into(),
            }),
    )
}

fn process_piece(
    piece_index: PieceIndex,
    piece: Piece,
    pieces_to_download: &mut HashMap<PieceIndex, Vec<(&mut Record, &mut RecordMetadata)>>,
) {
    for (record, metadata) in pieces_to_download.remove(&piece_index).unwrap_or_default() {
        // Fancy way to insert value in order to avoid going through stack (if naive
        // de-referencing is used) and potentially causing stack overflow as the
        // result
        record
            .as_flattened_mut()
            .copy_from_slice(piece.record().as_flattened());
        *metadata = RecordMetadata {
            commitment: *piece.commitment(),
            witness: *piece.witness(),
            piece_checksum: blake3_hash(piece.as_ref()),
        };
    }
}