subspace_farmer/
utils.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
//! Various utilities used by farmer or with farmer

pub mod ss58;
#[cfg(test)]
mod tests;

use crate::thread_pool_manager::{PlottingThreadPoolManager, PlottingThreadPoolPair};
use futures::channel::oneshot;
use futures::channel::oneshot::Canceled;
use futures::future::Either;
use rayon::{
    current_thread_index, ThreadBuilder, ThreadPool, ThreadPoolBuildError, ThreadPoolBuilder,
};
use std::future::Future;
use std::num::NonZeroUsize;
use std::ops::Deref;
use std::pin::{pin, Pin};
use std::process::exit;
use std::task::{Context, Poll};
use std::{fmt, io, iter, thread};
use thread_priority::{set_current_thread_priority, ThreadPriority};
use tokio::runtime::Handle;
use tokio::task;
use tracing::{debug, warn};

/// It doesn't make a lot of sense to have a huge number of farming threads, 32 is plenty
const MAX_DEFAULT_FARMING_THREADS: usize = 32;

/// Joins async join handle on drop
#[derive(Debug)]
pub struct AsyncJoinOnDrop<T> {
    handle: Option<task::JoinHandle<T>>,
    abort_on_drop: bool,
}

impl<T> Drop for AsyncJoinOnDrop<T> {
    #[inline]
    fn drop(&mut self) {
        if let Some(handle) = self.handle.take() {
            if self.abort_on_drop {
                handle.abort();
            }

            if !handle.is_finished() {
                task::block_in_place(move || {
                    let _ = Handle::current().block_on(handle);
                });
            }
        }
    }
}

impl<T> AsyncJoinOnDrop<T> {
    /// Create new instance.
    #[inline]
    pub fn new(handle: task::JoinHandle<T>, abort_on_drop: bool) -> Self {
        Self {
            handle: Some(handle),
            abort_on_drop,
        }
    }
}

impl<T> Future for AsyncJoinOnDrop<T> {
    type Output = Result<T, task::JoinError>;

    #[inline]
    fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        Pin::new(
            self.handle
                .as_mut()
                .expect("Only dropped in Drop impl; qed"),
        )
        .poll(cx)
    }
}

/// Joins synchronous join handle on drop
pub(crate) struct JoinOnDrop(Option<thread::JoinHandle<()>>);

impl Drop for JoinOnDrop {
    #[inline]
    fn drop(&mut self) {
        self.0
            .take()
            .expect("Always called exactly once; qed")
            .join()
            .expect("Panic if background thread panicked");
    }
}

impl JoinOnDrop {
    // Create new instance
    #[inline]
    pub(crate) fn new(handle: thread::JoinHandle<()>) -> Self {
        Self(Some(handle))
    }
}

impl Deref for JoinOnDrop {
    type Target = thread::JoinHandle<()>;

    #[inline]
    fn deref(&self) -> &Self::Target {
        self.0.as_ref().expect("Only dropped in Drop impl; qed")
    }
}

/// Runs future on a dedicated thread with the specified name, will block on drop until background
/// thread with future is stopped too, ensuring nothing is left in memory
pub fn run_future_in_dedicated_thread<CreateFut, Fut, T>(
    create_future: CreateFut,
    thread_name: String,
) -> io::Result<impl Future<Output = Result<T, Canceled>> + Send>
where
    CreateFut: (FnOnce() -> Fut) + Send + 'static,
    Fut: Future<Output = T> + 'static,
    T: Send + 'static,
{
    let (drop_tx, drop_rx) = oneshot::channel::<()>();
    let (result_tx, result_rx) = oneshot::channel();
    let handle = Handle::current();
    let join_handle = thread::Builder::new().name(thread_name).spawn(move || {
        let _tokio_handle_guard = handle.enter();

        let future = pin!(create_future());

        let result = match handle.block_on(futures::future::select(future, drop_rx)) {
            Either::Left((result, _)) => result,
            Either::Right(_) => {
                // Outer future was dropped, nothing left to do
                return;
            }
        };
        if let Err(_error) = result_tx.send(result) {
            debug!(
                thread_name = ?thread::current().name(),
                "Future finished, but receiver was already dropped",
            );
        }
    })?;
    // Ensure thread will not be left hanging forever
    let join_on_drop = JoinOnDrop::new(join_handle);

    Ok(async move {
        let result = result_rx.await;
        drop(drop_tx);
        drop(join_on_drop);
        result
    })
}

/// Abstraction for CPU core set
#[derive(Clone)]
pub struct CpuCoreSet {
    /// CPU cores that belong to this set
    cores: Vec<usize>,
    #[cfg(feature = "numa")]
    topology: Option<std::sync::Arc<hwlocality::Topology>>,
}

impl fmt::Debug for CpuCoreSet {
    #[inline]
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let mut s = f.debug_struct("CpuCoreSet");
        #[cfg(not(feature = "numa"))]
        if self.cores.array_windows::<2>().all(|&[a, b]| a + 1 == b) {
            s.field(
                "cores",
                &format!(
                    "{}-{}",
                    self.cores.first().expect("List of cores is not empty; qed"),
                    self.cores.last().expect("List of cores is not empty; qed")
                ),
            );
        } else {
            s.field(
                "cores",
                &self
                    .cores
                    .iter()
                    .map(usize::to_string)
                    .collect::<Vec<_>>()
                    .join(","),
            );
        }
        #[cfg(feature = "numa")]
        {
            use hwlocality::cpu::cpuset::CpuSet;
            use hwlocality::ffi::PositiveInt;

            s.field(
                "cores",
                &CpuSet::from_iter(
                    self.cores.iter().map(|&core| {
                        PositiveInt::try_from(core).expect("Valid CPU core index; qed")
                    }),
                ),
            );
        }
        s.finish_non_exhaustive()
    }
}

impl CpuCoreSet {
    /// Get cpu core numbers in this set
    pub fn cpu_cores(&self) -> &[usize] {
        &self.cores
    }

    /// Will truncate list of CPU cores to this number.
    ///
    /// Truncation will take into account L2 and L3 cache topology in order to use half of the
    /// actual physical cores and half of each core type in case of heterogeneous CPUs.
    ///
    /// If `cores` is zero, call will do nothing since zero number of cores is not allowed.
    pub fn truncate(&mut self, num_cores: usize) {
        let num_cores = num_cores.clamp(1, self.cores.len());

        #[cfg(feature = "numa")]
        if let Some(topology) = &self.topology {
            use hwlocality::object::attributes::ObjectAttributes;
            use hwlocality::object::types::ObjectType;

            let mut grouped_by_l2_cache_size_and_core_count =
                std::collections::HashMap::<(usize, usize), Vec<usize>>::new();
            topology
                .objects_with_type(ObjectType::L2Cache)
                .for_each(|object| {
                    let l2_cache_size =
                        if let Some(ObjectAttributes::Cache(cache)) = object.attributes() {
                            cache
                                .size()
                                .map(|size| size.get() as usize)
                                .unwrap_or_default()
                        } else {
                            0
                        };
                    if let Some(cpuset) = object.complete_cpuset() {
                        let cpuset = cpuset
                            .into_iter()
                            .map(usize::from)
                            .filter(|core| self.cores.contains(core))
                            .collect::<Vec<_>>();
                        let cpuset_len = cpuset.len();

                        if !cpuset.is_empty() {
                            grouped_by_l2_cache_size_and_core_count
                                .entry((l2_cache_size, cpuset_len))
                                .or_default()
                                .extend(cpuset);
                        }
                    }
                });

            // Make sure all CPU cores in this set were found
            if grouped_by_l2_cache_size_and_core_count
                .values()
                .flatten()
                .count()
                == self.cores.len()
            {
                // Walk through groups of cores for each (L2 cache size + number of cores in set)
                // tuple and pull number of CPU cores proportional to the fraction of the cores that
                // should be returned according to function argument
                self.cores = grouped_by_l2_cache_size_and_core_count
                    .into_values()
                    .flat_map(|cores| {
                        let limit = cores.len() * num_cores / self.cores.len();
                        // At least 1 CPU core is needed
                        cores.into_iter().take(limit.max(1))
                    })
                    .collect();

                self.cores.sort();

                return;
            }
        }
        self.cores.truncate(num_cores);
    }

    /// Pin current thread to this NUMA node (not just one CPU core)
    pub fn pin_current_thread(&self) {
        #[cfg(feature = "numa")]
        if let Some(topology) = &self.topology {
            use hwlocality::cpu::binding::CpuBindingFlags;
            use hwlocality::cpu::cpuset::CpuSet;
            use hwlocality::current_thread_id;
            use hwlocality::ffi::PositiveInt;

            // load the cpuset for the given core index.
            let cpu_cores = CpuSet::from_iter(
                self.cores
                    .iter()
                    .map(|&core| PositiveInt::try_from(core).expect("Valid CPU core index; qed")),
            );

            if let Err(error) =
                topology.bind_thread_cpu(current_thread_id(), &cpu_cores, CpuBindingFlags::empty())
            {
                warn!(%error, ?cpu_cores, "Failed to pin thread to CPU cores")
            }
        }
    }
}

/// Recommended number of thread pool size for farming, equal to number of CPU cores in the first
/// NUMA node
pub fn recommended_number_of_farming_threads() -> usize {
    #[cfg(feature = "numa")]
    match hwlocality::Topology::new().map(std::sync::Arc::new) {
        Ok(topology) => {
            return topology
                // Iterate over NUMA nodes
                .objects_at_depth(hwlocality::object::depth::Depth::NUMANode)
                // For each NUMA nodes get CPU set
                .filter_map(|node| node.cpuset())
                // Get number of CPU cores
                .map(|cpuset| cpuset.iter_set().count())
                .find(|&count| count > 0)
                .unwrap_or_else(num_cpus::get)
                .min(MAX_DEFAULT_FARMING_THREADS);
        }
        Err(error) => {
            warn!(%error, "Failed to get NUMA topology");
        }
    }
    num_cpus::get().min(MAX_DEFAULT_FARMING_THREADS)
}

/// Get all cpu cores, grouped into sets according to NUMA nodes or L3 cache groups on large CPUs.
///
/// Returned vector is guaranteed to have at least one element and have non-zero number of CPU cores
/// in each set.
pub fn all_cpu_cores() -> Vec<CpuCoreSet> {
    #[cfg(feature = "numa")]
    match hwlocality::Topology::new().map(std::sync::Arc::new) {
        Ok(topology) => {
            let cpu_cores = topology
                // Iterate over groups of L3 caches
                .objects_with_type(hwlocality::object::types::ObjectType::L3Cache)
                // For each NUMA nodes get CPU set
                .filter_map(|node| node.cpuset())
                // For each CPU set extract individual cores
                .map(|cpuset| cpuset.iter_set().map(usize::from).collect::<Vec<_>>())
                .filter(|cores| !cores.is_empty())
                .map(|cores| CpuCoreSet {
                    cores,
                    topology: Some(std::sync::Arc::clone(&topology)),
                })
                .collect::<Vec<_>>();

            if !cpu_cores.is_empty() {
                return cpu_cores;
            }
        }
        Err(error) => {
            warn!(%error, "Failed to get L3 cache topology");
        }
    }
    vec![CpuCoreSet {
        cores: (0..num_cpus::get()).collect(),
        #[cfg(feature = "numa")]
        topology: None,
    }]
}

/// Parse space-separated set of groups of CPU cores (individual cores are coma-separated) into
/// vector of CPU core sets that can be used for creation of plotting/replotting thread pools.
pub fn parse_cpu_cores_sets(
    s: &str,
) -> Result<Vec<CpuCoreSet>, Box<dyn std::error::Error + Send + Sync>> {
    #[cfg(feature = "numa")]
    let topology = hwlocality::Topology::new().map(std::sync::Arc::new).ok();

    s.split(' ')
        .map(|s| {
            let mut cores = Vec::new();
            for s in s.split(',') {
                let mut parts = s.split('-');
                let range_start = parts
                    .next()
                    .ok_or(
                        "Bad string format, must be comma separated list of CPU cores or ranges",
                    )?
                    .parse()?;

                if let Some(range_end) = parts.next() {
                    let range_end = range_end.parse()?;

                    cores.extend(range_start..=range_end);
                } else {
                    cores.push(range_start);
                }
            }

            Ok(CpuCoreSet {
                cores,
                #[cfg(feature = "numa")]
                topology: topology.clone(),
            })
        })
        .collect()
}

/// Thread indices for each thread pool
pub fn thread_pool_core_indices(
    thread_pool_size: Option<NonZeroUsize>,
    thread_pools: Option<NonZeroUsize>,
) -> Vec<CpuCoreSet> {
    thread_pool_core_indices_internal(all_cpu_cores(), thread_pool_size, thread_pools)
}

fn thread_pool_core_indices_internal(
    all_cpu_cores: Vec<CpuCoreSet>,
    thread_pool_size: Option<NonZeroUsize>,
    thread_pools: Option<NonZeroUsize>,
) -> Vec<CpuCoreSet> {
    #[cfg(feature = "numa")]
    let topology = &all_cpu_cores
        .first()
        .expect("Not empty according to function description; qed")
        .topology;

    // In case number of thread pools is not specified, but user did customize thread pool size,
    // default to auto-detected number of thread pools
    let thread_pools = thread_pools
        .map(|thread_pools| thread_pools.get())
        .or_else(|| thread_pool_size.map(|_| all_cpu_cores.len()));

    if let Some(thread_pools) = thread_pools {
        let mut thread_pool_core_indices = Vec::<CpuCoreSet>::with_capacity(thread_pools);

        let total_cpu_cores = all_cpu_cores.iter().flat_map(|set| set.cpu_cores()).count();

        if let Some(thread_pool_size) = thread_pool_size {
            // If thread pool size is fixed, loop over all CPU cores as many times as necessary and
            // assign contiguous ranges of CPU cores to corresponding thread pools
            let mut cpu_cores_iterator = iter::repeat(
                all_cpu_cores
                    .iter()
                    .flat_map(|cpu_core_set| cpu_core_set.cores.iter())
                    .copied(),
            )
            .flatten();

            for _ in 0..thread_pools {
                let cpu_cores = cpu_cores_iterator
                    .by_ref()
                    .take(thread_pool_size.get())
                    // To loop over all CPU cores multiple times, modulo naively obtained CPU
                    // cores by the total available number of CPU cores
                    .map(|core_index| core_index % total_cpu_cores)
                    .collect();

                thread_pool_core_indices.push(CpuCoreSet {
                    cores: cpu_cores,
                    #[cfg(feature = "numa")]
                    topology: topology.clone(),
                });
            }
        } else {
            // If thread pool size is not fixed, create threads pools with `total_cpu_cores/thread_pools` threads

            let all_cpu_cores = all_cpu_cores
                .iter()
                .flat_map(|cpu_core_set| cpu_core_set.cores.iter())
                .copied()
                .collect::<Vec<_>>();

            thread_pool_core_indices = all_cpu_cores
                .chunks(total_cpu_cores.div_ceil(thread_pools))
                .map(|cpu_cores| CpuCoreSet {
                    cores: cpu_cores.to_vec(),
                    #[cfg(feature = "numa")]
                    topology: topology.clone(),
                })
                .collect();
        }
        thread_pool_core_indices
    } else {
        // If everything is set to defaults, use physical layout of CPUs
        all_cpu_cores
    }
}

fn create_plotting_thread_pool_manager_thread_pool_pair(
    thread_prefix: &'static str,
    thread_pool_index: usize,
    cpu_core_set: CpuCoreSet,
    thread_priority: Option<ThreadPriority>,
) -> Result<ThreadPool, ThreadPoolBuildError> {
    let thread_name =
        move |thread_index| format!("{thread_prefix}-{thread_pool_index}.{thread_index}");
    // TODO: remove this panic handler when rayon logs panic_info
    // https://github.com/rayon-rs/rayon/issues/1208
    // (we'll lose the thread name, because it's not stored within rayon's WorkerThread)
    let panic_handler = move |panic_info| {
        if let Some(index) = current_thread_index() {
            eprintln!("panic on thread {}: {:?}", thread_name(index), panic_info);
        } else {
            // We want to guarantee exit, rather than panicking in a panic handler.
            eprintln!(
                "rayon panic handler called on non-rayon thread: {:?}",
                panic_info
            );
        }
        exit(1);
    };

    ThreadPoolBuilder::new()
        .thread_name(thread_name)
        .num_threads(cpu_core_set.cpu_cores().len())
        .panic_handler(panic_handler)
        .spawn_handler({
            let handle = Handle::current();

            rayon_custom_spawn_handler(move |thread| {
                let cpu_core_set = cpu_core_set.clone();
                let handle = handle.clone();

                move || {
                    cpu_core_set.pin_current_thread();
                    if let Some(thread_priority) = thread_priority {
                        if let Err(error) = set_current_thread_priority(thread_priority) {
                            warn!(%error, "Failed to set thread priority");
                        }
                    }
                    drop(cpu_core_set);

                    let _guard = handle.enter();

                    task::block_in_place(|| thread.run())
                }
            })
        })
        .build()
}

/// Create thread pools manager.
///
/// Creates thread pool pairs for each of CPU core set pair with number of plotting and replotting
/// threads corresponding to number of cores in each set and pins threads to all of those CPU cores
/// (each thread to all cors in a set, not thread per core). Each thread will also have Tokio
/// context available.
///
/// The easiest way to obtain CPUs is using [`all_cpu_cores`], but [`thread_pool_core_indices`] in case
/// support for user customizations is desired. They will then have to be composed into pairs for this function.
pub fn create_plotting_thread_pool_manager<I>(
    mut cpu_core_sets: I,
    thread_priority: Option<ThreadPriority>,
) -> Result<PlottingThreadPoolManager, ThreadPoolBuildError>
where
    I: ExactSizeIterator<Item = (CpuCoreSet, CpuCoreSet)>,
{
    let total_thread_pools = cpu_core_sets.len();

    PlottingThreadPoolManager::new(
        |thread_pool_index| {
            let (plotting_cpu_core_set, replotting_cpu_core_set) = cpu_core_sets
                .next()
                .expect("Number of thread pools is the same as cpu core sets; qed");

            Ok(PlottingThreadPoolPair {
                plotting: create_plotting_thread_pool_manager_thread_pool_pair(
                    "plotting",
                    thread_pool_index,
                    plotting_cpu_core_set,
                    thread_priority,
                )?,
                replotting: create_plotting_thread_pool_manager_thread_pool_pair(
                    "replotting",
                    thread_pool_index,
                    replotting_cpu_core_set,
                    thread_priority,
                )?,
            })
        },
        NonZeroUsize::new(total_thread_pools)
            .expect("Thread pool is guaranteed to be non-empty; qed"),
    )
}

/// This function is supposed to be used with [`rayon::ThreadPoolBuilder::spawn_handler()`] to
/// spawn handler with a custom logic defined by `spawn_hook_builder`.
///
/// `spawn_hook_builder` is called with thread builder to create `spawn_handler` that in turn will
/// be spawn rayon's thread with desired environment.
pub fn rayon_custom_spawn_handler<SpawnHandlerBuilder, SpawnHandler, SpawnHandlerResult>(
    mut spawn_handler_builder: SpawnHandlerBuilder,
) -> impl FnMut(ThreadBuilder) -> io::Result<()>
where
    SpawnHandlerBuilder: (FnMut(ThreadBuilder) -> SpawnHandler) + Clone,
    SpawnHandler: (FnOnce() -> SpawnHandlerResult) + Send + 'static,
    SpawnHandlerResult: Send + 'static,
{
    move |thread: ThreadBuilder| {
        let mut b = thread::Builder::new();
        if let Some(name) = thread.name() {
            b = b.name(name.to_owned());
        }
        if let Some(stack_size) = thread.stack_size() {
            b = b.stack_size(stack_size);
        }

        b.spawn(spawn_handler_builder(thread))?;
        Ok(())
    }
}

/// This function is supposed to be used with [`rayon::ThreadPoolBuilder::spawn_handler()`] to
/// inherit current tokio runtime.
pub fn tokio_rayon_spawn_handler() -> impl FnMut(ThreadBuilder) -> io::Result<()> {
    let handle = Handle::current();

    rayon_custom_spawn_handler(move |thread| {
        let handle = handle.clone();

        move || {
            let _guard = handle.enter();

            task::block_in_place(|| thread.run())
        }
    })
}