subspace_farmer/thread_pool_manager.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
//! Thread pool managing utilities for plotting purposes
use event_listener::Event;
use parking_lot::Mutex;
use rayon::{ThreadPool, ThreadPoolBuildError};
use std::num::NonZeroUsize;
use std::ops::Deref;
use std::sync::Arc;
/// A wrapper around thread pool pair for plotting purposes
#[derive(Debug)]
pub struct PlottingThreadPoolPair {
/// Plotting thread pool
pub plotting: ThreadPool,
/// Replotting thread pool
pub replotting: ThreadPool,
}
#[derive(Debug)]
struct Inner {
thread_pool_pairs: Vec<PlottingThreadPoolPair>,
}
/// Wrapper around [`PlottingThreadPoolPair`] that on `Drop` will return thread pool back into
/// corresponding [`PlottingThreadPoolManager`].
#[derive(Debug)]
#[must_use]
pub struct PlottingThreadPoolsGuard {
inner: Arc<(Mutex<Inner>, Event)>,
thread_pool_pair: Option<PlottingThreadPoolPair>,
}
impl Deref for PlottingThreadPoolsGuard {
type Target = PlottingThreadPoolPair;
#[inline]
fn deref(&self) -> &Self::Target {
self.thread_pool_pair
.as_ref()
.expect("Value exists until `Drop`; qed")
}
}
impl Drop for PlottingThreadPoolsGuard {
#[inline]
fn drop(&mut self) {
let (mutex, event) = &*self.inner;
mutex.lock().thread_pool_pairs.push(
self.thread_pool_pair
.take()
.expect("Happens only once in `Drop`; qed"),
);
event.notify_additional(1);
}
}
/// Plotting thread pool manager.
///
/// This abstraction wraps a set of thread pool pairs and allows to use them one at a time.
///
/// Each pair contains one thread pool for plotting purposes and one for replotting, this is because
/// they'll share the same set of CPU cores in most cases, and it would be inefficient to use them
/// concurrently.
///
/// For example on machine with 64 logical cores and 4 NUMA nodes it would be recommended to create
/// 4 thread pools with 16 threads each plotting thread pool and 8 threads in each replotting thread
/// pool, which would mean work done within thread pool is tied to CPU cores dedicated for that
/// thread pool.
#[derive(Debug, Clone)]
pub struct PlottingThreadPoolManager {
inner: Arc<(Mutex<Inner>, Event)>,
thread_pool_pairs: NonZeroUsize,
}
impl PlottingThreadPoolManager {
/// Create new thread pool manager by instantiating `thread_pools` thread pools using
/// `create_thread_pool`.
///
/// `create_thread_pool` takes one argument `thread_pool_index`.
pub fn new<C>(
create_thread_pools: C,
thread_pool_pairs: NonZeroUsize,
) -> Result<Self, ThreadPoolBuildError>
where
C: FnMut(usize) -> Result<PlottingThreadPoolPair, ThreadPoolBuildError>,
{
let inner = Inner {
thread_pool_pairs: (0..thread_pool_pairs.get())
.map(create_thread_pools)
.collect::<Result<Vec<_>, _>>()?,
};
Ok(Self {
inner: Arc::new((Mutex::new(inner), Event::new())),
thread_pool_pairs,
})
}
/// How many thread pool pairs are being managed here
pub fn thread_pool_pairs(&self) -> NonZeroUsize {
self.thread_pool_pairs
}
/// Get one of inner thread pool pairs, will wait until one is available if needed
pub async fn get_thread_pools(&self) -> PlottingThreadPoolsGuard {
let (mutex, event) = &*self.inner;
let thread_pool_pair = loop {
let listener = event.listen();
if let Some(thread_pool_pair) = mutex.lock().thread_pool_pairs.pop() {
break thread_pool_pair;
}
listener.await;
};
PlottingThreadPoolsGuard {
inner: Arc::clone(&self.inner),
thread_pool_pair: Some(thread_pool_pair),
}
}
}