subspace_farmer/
disk_piece_cache.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
//! Disk piece cache implementation

mod metrics;
#[cfg(test)]
mod tests;

use crate::disk_piece_cache::metrics::DiskPieceCacheMetrics;
use crate::farm;
use crate::farm::{FarmError, PieceCacheId, PieceCacheOffset};
use crate::single_disk_farm::direct_io_file::{DirectIoFile, DISK_SECTOR_SIZE};
use crate::utils::AsyncJoinOnDrop;
use async_trait::async_trait;
use bytes::BytesMut;
use futures::channel::mpsc;
use futures::{stream, SinkExt, Stream, StreamExt};
use parking_lot::Mutex;
use prometheus_client::registry::Registry;
use std::num::NonZeroU32;
use std::path::Path;
use std::sync::atomic::{AtomicU8, Ordering};
use std::sync::Arc;
use std::task::Poll;
use std::{fs, io};
use subspace_core_primitives::hashes::{blake3_hash_list, Blake3Hash};
use subspace_core_primitives::pieces::{Piece, PieceIndex};
use subspace_farmer_components::file_ext::FileExt;
use thiserror::Error;
use tokio::runtime::Handle;
use tokio::task;
use tracing::{debug, info, warn};

/// How many pieces should be skipped before stopping to check the rest of contents, this allows to
/// not miss most of the pieces after one or two corrupted pieces
const CONTENTS_READ_SKIP_LIMIT: usize = 3;
/// How many piece to read from disk at the same time (using tokio thread pool)
const PIECES_READING_CONCURRENCY: usize = 32;

/// Disk piece cache open error
#[derive(Debug, Error)]
pub enum DiskPieceCacheError {
    /// I/O error occurred
    #[error("Disk piece cache I/O error: {0}")]
    Io(#[from] io::Error),
    /// Can't preallocate cache file, probably not enough space on disk
    #[error("Can't preallocate cache file, probably not enough space on disk: {0}")]
    CantPreallocateCacheFile(io::Error),
    /// Offset outsize of range
    #[error("Offset outsize of range: provided {provided}, max {max}")]
    OffsetOutsideOfRange {
        /// Provided offset
        provided: u32,
        /// Max offset
        max: u32,
    },
    /// Checksum mismatch
    #[error("Checksum mismatch")]
    ChecksumMismatch,
}

#[derive(Debug)]
struct FilePool {
    files: Box<[DirectIoFile; PIECES_READING_CONCURRENCY]>,
    cursor: AtomicU8,
}

impl FilePool {
    fn open(path: &Path) -> io::Result<Self> {
        let files = (0..PIECES_READING_CONCURRENCY)
            .map(|_| DirectIoFile::open(path))
            .collect::<Result<Box<_>, _>>()?
            .try_into()
            .expect("Statically correct length; qed");
        Ok(Self {
            files,
            cursor: AtomicU8::new(0),
        })
    }

    fn read(&self) -> &DirectIoFile {
        let position = usize::from(self.cursor.fetch_add(1, Ordering::Relaxed));
        &self.files[position % PIECES_READING_CONCURRENCY]
    }

    fn write(&self) -> &DirectIoFile {
        // Always the same file or else overlapping writes will be corrupted due to
        // read/modify/write internals, which are in turn caused by alignment requirements
        &self.files[0]
    }
}

#[derive(Debug)]
struct Inner {
    id: PieceCacheId,
    files: FilePool,
    max_num_elements: u32,
    metrics: Option<DiskPieceCacheMetrics>,
}

/// Dedicated piece cache stored on one disk, is used both to accelerate DSN queries and to plot
/// faster.
///
/// Implementation is backed by a file on disk.
#[derive(Debug, Clone)]
pub struct DiskPieceCache {
    inner: Arc<Inner>,
}

#[async_trait]
impl farm::PieceCache for DiskPieceCache {
    fn id(&self) -> &PieceCacheId {
        &self.inner.id
    }

    #[inline]
    fn max_num_elements(&self) -> u32 {
        self.inner.max_num_elements
    }

    async fn contents(
        &self,
    ) -> Result<
        Box<
            dyn Stream<Item = Result<(PieceCacheOffset, Option<PieceIndex>), FarmError>>
                + Unpin
                + Send
                + '_,
        >,
        FarmError,
    > {
        let this = self.clone();
        let (mut sender, receiver) = mpsc::channel(100_000);
        let read_contents = task::spawn_blocking(move || {
            let contents = this.contents();
            for (piece_cache_offset, maybe_piece) in contents {
                if let Err(error) =
                    Handle::current().block_on(sender.send(Ok((piece_cache_offset, maybe_piece))))
                {
                    debug!(%error, "Aborting contents iteration due to receiver dropping");
                    break;
                }
            }
        });
        let read_contents = Mutex::new(Some(AsyncJoinOnDrop::new(read_contents, false)));
        // Change order such that in closure below `receiver` is dropped before `read_contents`
        let mut receiver = receiver;

        Ok(Box::new(stream::poll_fn(move |ctx| {
            let poll_result = receiver.poll_next_unpin(ctx);

            if matches!(poll_result, Poll::Ready(None)) {
                read_contents.lock().take();
            }

            poll_result
        })))
    }

    async fn write_piece(
        &self,
        offset: PieceCacheOffset,
        piece_index: PieceIndex,
        piece: &Piece,
    ) -> Result<(), FarmError> {
        let piece = piece.clone();
        let piece_cache = self.clone();
        Ok(AsyncJoinOnDrop::new(
            task::spawn_blocking(move || piece_cache.write_piece(offset, piece_index, &piece)),
            false,
        )
        .await??)
    }

    async fn read_piece_index(
        &self,
        offset: PieceCacheOffset,
    ) -> Result<Option<PieceIndex>, FarmError> {
        let piece_cache = self.clone();
        Ok(AsyncJoinOnDrop::new(
            task::spawn_blocking(move || piece_cache.read_piece_index(offset)),
            false,
        )
        .await??)
    }

    async fn read_piece(
        &self,
        offset: PieceCacheOffset,
    ) -> Result<Option<(PieceIndex, Piece)>, FarmError> {
        // TODO: On Windows spawning blocking task that allows concurrent reads causes huge memory
        //  usage. No idea why it happens, but not spawning anything at all helps for some reason.
        //  Someone at some point should figure it out and fix, but it will probably be not me
        //  (Nazar).
        //  See https://github.com/autonomys/subspace/issues/2813 and linked forum post for details.
        //  This TODO exists in multiple files
        if cfg!(windows) {
            Ok(task::block_in_place(|| self.read_piece(offset))?)
        } else {
            let piece_cache = self.clone();
            Ok(AsyncJoinOnDrop::new(
                task::spawn_blocking(move || piece_cache.read_piece(offset)),
                false,
            )
            .await??)
        }
    }

    async fn read_pieces(
        &self,
        offsets: Box<dyn Iterator<Item = PieceCacheOffset> + Send>,
    ) -> Result<
        Box<
            dyn Stream<Item = Result<(PieceCacheOffset, Option<(PieceIndex, Piece)>), FarmError>>
                + Send
                + Unpin
                + '_,
        >,
        FarmError,
    > {
        let iter = offsets.map(move |offset| async move {
            Ok((offset, farm::PieceCache::read_piece(self, offset).await?))
        });
        Ok(Box::new(
            // Constrain concurrency to avoid excessive memory usage, while still getting
            // performance of concurrent reads
            stream::iter(iter).buffer_unordered(PIECES_READING_CONCURRENCY),
        ))
    }
}

impl DiskPieceCache {
    pub(crate) const FILE_NAME: &'static str = "piece_cache.bin";

    /// Open cache, capacity is measured in elements of [`DiskPieceCache::element_size()`] size
    pub fn open(
        directory: &Path,
        capacity: NonZeroU32,
        id: Option<PieceCacheId>,
        registry: Option<&mut Registry>,
    ) -> Result<Self, DiskPieceCacheError> {
        let capacity = capacity.get();
        let files = FilePool::open(&directory.join(Self::FILE_NAME))?;

        let expected_size = u64::from(Self::element_size()) * u64::from(capacity);
        // Align plot file size for disk sector size
        let expected_size =
            expected_size.div_ceil(DISK_SECTOR_SIZE as u64) * DISK_SECTOR_SIZE as u64;
        {
            let file = files.write();
            if file.size()? != expected_size {
                // Allocating the whole file (`set_len` below can create a sparse file, which will cause
                // writes to fail later)
                file.preallocate(expected_size)
                    .map_err(DiskPieceCacheError::CantPreallocateCacheFile)?;
                // Truncating file (if necessary)
                file.set_len(expected_size)?;
            }
        }

        // ID for cache is ephemeral unless provided explicitly
        let id = id.unwrap_or_else(PieceCacheId::new);
        let metrics = registry.map(|registry| DiskPieceCacheMetrics::new(registry, &id, capacity));

        Ok(Self {
            inner: Arc::new(Inner {
                id,
                files,
                max_num_elements: capacity,
                metrics,
            }),
        })
    }

    /// Size of a single piece cache element
    pub const fn element_size() -> u32 {
        (PieceIndex::SIZE + Piece::SIZE + Blake3Hash::SIZE) as u32
    }

    /// Contents of this piece cache
    ///
    /// NOTE: it is possible to do concurrent reads and writes, higher level logic must ensure this
    /// doesn't happen for the same piece being accessed!
    pub(crate) fn contents(
        &self,
    ) -> impl ExactSizeIterator<Item = (PieceCacheOffset, Option<PieceIndex>)> + '_ {
        let mut element = vec![0; Self::element_size() as usize];
        let count_total = self
            .inner
            .metrics
            .as_ref()
            .map(|metrics| {
                metrics.contents.inc();
                metrics.capacity_used.get() == 0
            })
            .unwrap_or_default();
        let mut current_skip = 0;

        // TODO: Parallelize or read in larger batches
        (0..self.inner.max_num_elements).map(move |offset| {
            if current_skip > CONTENTS_READ_SKIP_LIMIT {
                return (PieceCacheOffset(offset), None);
            }

            match self.read_piece_internal(offset, &mut element) {
                Ok(maybe_piece_index) => {
                    if maybe_piece_index.is_none() {
                        current_skip += 1;
                    } else {
                        if count_total && let Some(metrics) = &self.inner.metrics {
                            metrics.capacity_used.inc();
                        }
                        current_skip = 0;
                    }

                    (PieceCacheOffset(offset), maybe_piece_index)
                }
                Err(error) => {
                    warn!(%error, %offset, "Failed to read cache element");

                    current_skip += 1;

                    (PieceCacheOffset(offset), None)
                }
            }
        })
    }

    /// Store piece in cache at specified offset, replacing existing piece if there is any
    ///
    /// NOTE: it is possible to do concurrent reads and writes, higher level logic must ensure this
    /// doesn't happen for the same piece being accessed!
    pub(crate) fn write_piece(
        &self,
        offset: PieceCacheOffset,
        piece_index: PieceIndex,
        piece: &Piece,
    ) -> Result<(), DiskPieceCacheError> {
        let PieceCacheOffset(offset) = offset;
        if offset >= self.inner.max_num_elements {
            return Err(DiskPieceCacheError::OffsetOutsideOfRange {
                provided: offset,
                max: self.inner.max_num_elements - 1,
            });
        }

        if let Some(metrics) = &self.inner.metrics {
            metrics.write_piece.inc();
            let capacity_used = i64::from(offset + 1);
            if metrics.capacity_used.get() != capacity_used {
                metrics.capacity_used.set(capacity_used);
            }
        }
        let element_offset = u64::from(offset) * u64::from(Self::element_size());

        let piece_index_bytes = piece_index.to_bytes();
        // File writes are read/write/modify internally, so combine all data here for more efficient
        // write
        let mut bytes = Vec::with_capacity(PieceIndex::SIZE + piece.len() + Blake3Hash::SIZE);
        bytes.extend_from_slice(&piece_index_bytes);
        bytes.extend_from_slice(piece.as_ref());
        bytes.extend_from_slice(blake3_hash_list(&[&piece_index_bytes, piece.as_ref()]).as_ref());
        self.inner
            .files
            .write()
            .write_all_at(&bytes, element_offset)?;

        Ok(())
    }

    /// Read piece index from cache at specified offset.
    ///
    /// Returns `None` if offset is out of range.
    ///
    /// NOTE: it is possible to do concurrent reads and writes, higher level logic must ensure this
    /// doesn't happen for the same piece being accessed!
    pub(crate) fn read_piece_index(
        &self,
        offset: PieceCacheOffset,
    ) -> Result<Option<PieceIndex>, DiskPieceCacheError> {
        let PieceCacheOffset(offset) = offset;
        if offset >= self.inner.max_num_elements {
            warn!(%offset, "Trying to read piece out of range, this must be an implementation bug");
            return Err(DiskPieceCacheError::OffsetOutsideOfRange {
                provided: offset,
                max: self.inner.max_num_elements - 1,
            });
        }

        if let Some(metrics) = &self.inner.metrics {
            metrics.read_piece_index.inc();
        }
        self.read_piece_internal(offset, &mut vec![0; Self::element_size() as usize])
    }

    /// Read piece from cache at specified offset.
    ///
    /// Returns `None` if offset is out of range.
    ///
    /// NOTE: it is possible to do concurrent reads and writes, higher level logic must ensure this
    /// doesn't happen for the same piece being accessed!
    pub(crate) fn read_piece(
        &self,
        offset: PieceCacheOffset,
    ) -> Result<Option<(PieceIndex, Piece)>, DiskPieceCacheError> {
        let PieceCacheOffset(offset) = offset;
        if offset >= self.inner.max_num_elements {
            warn!(%offset, "Trying to read piece out of range, this must be an implementation bug");
            return Err(DiskPieceCacheError::OffsetOutsideOfRange {
                provided: offset,
                max: self.inner.max_num_elements - 1,
            });
        }

        if let Some(metrics) = &self.inner.metrics {
            metrics.read_piece.inc();
        }
        let mut element = BytesMut::zeroed(Self::element_size() as usize);
        if let Some(piece_index) = self.read_piece_internal(offset, &mut element)? {
            let element = element.freeze();
            let piece =
                Piece::try_from(element.slice_ref(&element[PieceIndex::SIZE..][..Piece::SIZE]))
                    .expect("Correct length; qed");
            Ok(Some((piece_index, piece)))
        } else {
            Ok(None)
        }
    }

    fn read_piece_internal(
        &self,
        offset: u32,
        element: &mut [u8],
    ) -> Result<Option<PieceIndex>, DiskPieceCacheError> {
        self.inner
            .files
            .read()
            .read_exact_at(element, u64::from(offset) * u64::from(Self::element_size()))?;

        let (piece_index_bytes, remaining_bytes) = element.split_at(PieceIndex::SIZE);
        let (piece_bytes, expected_checksum) = remaining_bytes.split_at(Piece::SIZE);

        // Verify checksum
        let actual_checksum = blake3_hash_list(&[piece_index_bytes, piece_bytes]);
        if *actual_checksum != *expected_checksum {
            if element.iter().all(|&byte| byte == 0) {
                return Ok(None);
            }

            debug!(
                actual_checksum = %hex::encode(actual_checksum),
                expected_checksum = %hex::encode(expected_checksum),
                "Hash doesn't match, corrupted piece in cache"
            );

            return Err(DiskPieceCacheError::ChecksumMismatch);
        }

        let piece_index = PieceIndex::from_bytes(
            piece_index_bytes
                .try_into()
                .expect("Statically known to have correct size; qed"),
        );
        Ok(Some(piece_index))
    }

    pub(crate) fn wipe(directory: &Path) -> io::Result<()> {
        let piece_cache = directory.join(Self::FILE_NAME);
        if !piece_cache.exists() {
            return Ok(());
        }
        info!("Deleting piece cache file at {}", piece_cache.display());
        fs::remove_file(piece_cache)
    }
}