subspace_core_primitives/
solutions.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
//! Solutions-related data structures and functions.

use crate::pieces::{PieceOffset, Record, RecordCommitment, RecordWitness};
use crate::pos::PosProof;
use crate::sectors::SectorIndex;
use crate::segments::{HistorySize, SegmentIndex};
use crate::{PublicKey, ScalarBytes};
use core::array::TryFromSliceError;
use core::fmt;
use derive_more::{AsMut, AsRef, Deref, DerefMut, From, Into};
use num_traits::WrappingSub;
use parity_scale_codec::{Decode, Encode, MaxEncodedLen};
use scale_info::TypeInfo;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
#[cfg(feature = "serde")]
use serde::{Deserializer, Serializer};
#[cfg(feature = "serde")]
use serde_big_array::BigArray;
use static_assertions::const_assert;

// TODO: Add related methods to `SolutionRange`.
/// Type of solution range.
pub type SolutionRange = u64;

/// Computes the following:
/// ```text
/// MAX * slot_probability / chunks * s_buckets / pieces
/// ```
pub const fn pieces_to_solution_range(pieces: u64, slot_probability: (u64, u64)) -> SolutionRange {
    let solution_range = SolutionRange::MAX
        // Account for slot probability
        / slot_probability.1 * slot_probability.0
        // Now take probability of hitting occupied s-bucket in a piece into account
        / Record::NUM_CHUNKS as u64
        * Record::NUM_S_BUCKETS as u64;

    // Take number of pieces into account
    solution_range / pieces
}

/// Computes the following:
/// ```text
/// MAX * slot_probability / chunks * s_buckets / solution_range
/// ```
pub const fn solution_range_to_pieces(
    solution_range: SolutionRange,
    slot_probability: (u64, u64),
) -> u64 {
    let pieces = SolutionRange::MAX
        // Account for slot probability
        / slot_probability.1 * slot_probability.0
        // Now take probability of hitting occupied s-bucket in sector into account
        / Record::NUM_CHUNKS as u64
        * Record::NUM_S_BUCKETS as u64;

    // Take solution range into account
    pieces / solution_range
}

// Quick test to ensure functions above are the inverse of each other
const_assert!(solution_range_to_pieces(pieces_to_solution_range(1, (1, 6)), (1, 6)) == 1);
const_assert!(solution_range_to_pieces(pieces_to_solution_range(3, (1, 6)), (1, 6)) == 3);
const_assert!(solution_range_to_pieces(pieces_to_solution_range(5, (1, 6)), (1, 6)) == 5);

/// A Ristretto Schnorr signature as bytes produced by `schnorrkel` crate.
#[derive(
    Copy, Clone, PartialEq, Eq, Ord, PartialOrd, Hash, Encode, Decode, TypeInfo, Deref, From, Into,
)]
pub struct RewardSignature([u8; RewardSignature::SIZE]);

impl fmt::Debug for RewardSignature {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "{}", hex::encode(self.0))
    }
}

#[cfg(feature = "serde")]
#[derive(Serialize, Deserialize)]
#[serde(transparent)]
struct RewardSignatureBinary(#[serde(with = "BigArray")] [u8; RewardSignature::SIZE]);

#[cfg(feature = "serde")]
#[derive(Serialize, Deserialize)]
#[serde(transparent)]
struct RewardSignatureHex(#[serde(with = "hex")] [u8; RewardSignature::SIZE]);

#[cfg(feature = "serde")]
impl Serialize for RewardSignature {
    #[inline]
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: Serializer,
    {
        if serializer.is_human_readable() {
            RewardSignatureHex(self.0).serialize(serializer)
        } else {
            RewardSignatureBinary(self.0).serialize(serializer)
        }
    }
}

#[cfg(feature = "serde")]
impl<'de> Deserialize<'de> for RewardSignature {
    #[inline]
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
    where
        D: Deserializer<'de>,
    {
        Ok(Self(if deserializer.is_human_readable() {
            RewardSignatureHex::deserialize(deserializer)?.0
        } else {
            RewardSignatureBinary::deserialize(deserializer)?.0
        }))
    }
}

impl AsRef<[u8]> for RewardSignature {
    #[inline]
    fn as_ref(&self) -> &[u8] {
        &self.0
    }
}

impl RewardSignature {
    /// Reward signature size in bytes
    pub const SIZE: usize = 64;
}

/// Witness for chunk contained within a record.
#[derive(
    Copy,
    Clone,
    Eq,
    PartialEq,
    Hash,
    Deref,
    DerefMut,
    From,
    Into,
    Encode,
    Decode,
    TypeInfo,
    MaxEncodedLen,
)]
#[repr(transparent)]
pub struct ChunkWitness([u8; ChunkWitness::SIZE]);

impl fmt::Debug for ChunkWitness {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "{}", hex::encode(self.0))
    }
}

#[cfg(feature = "serde")]
#[derive(Serialize, Deserialize)]
#[serde(transparent)]
struct ChunkWitnessBinary(#[serde(with = "BigArray")] [u8; ChunkWitness::SIZE]);

#[cfg(feature = "serde")]
#[derive(Serialize, Deserialize)]
#[serde(transparent)]
struct ChunkWitnessHex(#[serde(with = "hex")] [u8; ChunkWitness::SIZE]);

#[cfg(feature = "serde")]
impl Serialize for ChunkWitness {
    #[inline]
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: Serializer,
    {
        if serializer.is_human_readable() {
            ChunkWitnessHex(self.0).serialize(serializer)
        } else {
            ChunkWitnessBinary(self.0).serialize(serializer)
        }
    }
}

#[cfg(feature = "serde")]
impl<'de> Deserialize<'de> for ChunkWitness {
    #[inline]
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
    where
        D: Deserializer<'de>,
    {
        Ok(Self(if deserializer.is_human_readable() {
            ChunkWitnessHex::deserialize(deserializer)?.0
        } else {
            ChunkWitnessBinary::deserialize(deserializer)?.0
        }))
    }
}

impl Default for ChunkWitness {
    #[inline]
    fn default() -> Self {
        Self([0; Self::SIZE])
    }
}

impl TryFrom<&[u8]> for ChunkWitness {
    type Error = TryFromSliceError;

    #[inline]
    fn try_from(slice: &[u8]) -> Result<Self, Self::Error> {
        <[u8; Self::SIZE]>::try_from(slice).map(Self)
    }
}

impl AsRef<[u8]> for ChunkWitness {
    #[inline]
    fn as_ref(&self) -> &[u8] {
        &self.0
    }
}

impl AsMut<[u8]> for ChunkWitness {
    #[inline]
    fn as_mut(&mut self) -> &mut [u8] {
        &mut self.0
    }
}

impl ChunkWitness {
    /// Size of chunk witness in bytes.
    pub const SIZE: usize = 48;
}

/// Farmer solution for slot challenge.
#[derive(Clone, Debug, Eq, PartialEq, Encode, Decode, TypeInfo)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(feature = "serde", serde(rename_all = "camelCase"))]
pub struct Solution<RewardAddress> {
    /// Public key of the farmer that created the solution
    pub public_key: PublicKey,
    /// Address for receiving block reward
    pub reward_address: RewardAddress,
    /// Index of the sector where solution was found
    pub sector_index: SectorIndex,
    /// Size of the blockchain history at time of sector creation
    pub history_size: HistorySize,
    /// Pieces offset within sector
    pub piece_offset: PieceOffset,
    /// Record commitment that can use used to verify that piece was included in blockchain history
    pub record_commitment: RecordCommitment,
    /// Witness for above record commitment
    pub record_witness: RecordWitness,
    /// Chunk at above offset
    pub chunk: ScalarBytes,
    /// Witness for above chunk
    pub chunk_witness: ChunkWitness,
    /// Proof of space for piece offset
    pub proof_of_space: PosProof,
}

impl<RewardAddressA> Solution<RewardAddressA> {
    /// Transform solution with one reward address type into solution with another compatible
    /// reward address type.
    pub fn into_reward_address_format<T, RewardAddressB>(self) -> Solution<RewardAddressB>
    where
        RewardAddressA: Into<T>,
        T: Into<RewardAddressB>,
    {
        let Solution {
            public_key,
            reward_address,
            sector_index,
            history_size,
            piece_offset,
            record_commitment,
            record_witness,
            chunk,
            chunk_witness,
            proof_of_space,
        } = self;
        Solution {
            public_key,
            reward_address: Into::<T>::into(reward_address).into(),
            sector_index,
            history_size,
            piece_offset,
            record_commitment,
            record_witness,
            chunk,
            chunk_witness,
            proof_of_space,
        }
    }
}

impl<RewardAddress> Solution<RewardAddress> {
    /// Dummy solution for the genesis block
    pub fn genesis_solution(public_key: PublicKey, reward_address: RewardAddress) -> Self {
        Self {
            public_key,
            reward_address,
            sector_index: 0,
            history_size: HistorySize::from(SegmentIndex::ZERO),
            piece_offset: PieceOffset::default(),
            record_commitment: RecordCommitment::default(),
            record_witness: RecordWitness::default(),
            chunk: ScalarBytes::default(),
            chunk_witness: ChunkWitness::default(),
            proof_of_space: PosProof::default(),
        }
    }
}

/// Bidirectional distance metric implemented on top of subtraction
#[inline(always)]
pub fn bidirectional_distance<T: WrappingSub + Ord>(a: &T, b: &T) -> T {
    let diff = a.wrapping_sub(b);
    let diff2 = b.wrapping_sub(a);
    // Find smaller diff between 2 directions.
    diff.min(diff2)
}