subspace_core_primitives/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
//! Core primitives for Subspace Network.

#![cfg_attr(not(feature = "std"), no_std)]
#![warn(rust_2018_idioms, missing_docs)]
#![cfg_attr(feature = "std", warn(missing_debug_implementations))]
#![feature(
    array_chunks,
    const_trait_impl,
    const_try,
    new_zeroed_alloc,
    portable_simd,
    step_trait
)]

pub mod checksum;
pub mod hashes;
pub mod objects;
pub mod pieces;
pub mod pos;
pub mod pot;
pub mod sectors;
pub mod segments;
pub mod solutions;
#[cfg(test)]
mod tests;

use crate::hashes::{blake3_hash, blake3_hash_list, Blake3Hash};
use core::fmt;
use derive_more::{Add, AsMut, AsRef, Deref, DerefMut, Display, Div, From, Into, Mul, Rem, Sub};
use num_traits::{WrappingAdd, WrappingSub};
use parity_scale_codec::{Decode, Encode, MaxEncodedLen};
use scale_info::TypeInfo;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
#[cfg(feature = "serde")]
use serde::{Deserializer, Serializer};
use static_assertions::const_assert;

// Refuse to compile on lower than 32-bit platforms
const_assert!(core::mem::size_of::<usize>() >= core::mem::size_of::<u32>());

/// Signing context used for creating reward signatures by farmers.
pub const REWARD_SIGNING_CONTEXT: &[u8] = b"subspace_reward";

/// Type of randomness.
#[derive(
    Default, Copy, Clone, Eq, PartialEq, From, Into, Deref, Encode, Decode, TypeInfo, MaxEncodedLen,
)]
pub struct Randomness([u8; Randomness::SIZE]);

impl fmt::Debug for Randomness {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "{}", hex::encode(self.0))
    }
}

#[cfg(feature = "serde")]
#[derive(Serialize, Deserialize)]
#[serde(transparent)]
struct RandomnessBinary([u8; Randomness::SIZE]);

#[cfg(feature = "serde")]
#[derive(Serialize, Deserialize)]
#[serde(transparent)]
struct RandomnessHex(#[serde(with = "hex")] [u8; Randomness::SIZE]);

#[cfg(feature = "serde")]
impl Serialize for Randomness {
    #[inline]
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: Serializer,
    {
        if serializer.is_human_readable() {
            RandomnessHex(self.0).serialize(serializer)
        } else {
            RandomnessBinary(self.0).serialize(serializer)
        }
    }
}

#[cfg(feature = "serde")]
impl<'de> Deserialize<'de> for Randomness {
    #[inline]
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
    where
        D: Deserializer<'de>,
    {
        Ok(Self(if deserializer.is_human_readable() {
            RandomnessHex::deserialize(deserializer)?.0
        } else {
            RandomnessBinary::deserialize(deserializer)?.0
        }))
    }
}

impl AsRef<[u8]> for Randomness {
    #[inline]
    fn as_ref(&self) -> &[u8] {
        &self.0
    }
}

impl AsMut<[u8]> for Randomness {
    #[inline]
    fn as_mut(&mut self) -> &mut [u8] {
        &mut self.0
    }
}

impl Randomness {
    /// Size of randomness (in bytes).
    pub const SIZE: usize = 32;

    /// Derive global slot challenge from global randomness.
    // TODO: Separate type for global challenge
    pub fn derive_global_challenge(&self, slot: SlotNumber) -> Blake3Hash {
        blake3_hash_list(&[&self.0, &slot.to_le_bytes()])
    }
}

/// Block number in Subspace network.
pub type BlockNumber = u32;

/// Block hash in Subspace network.
pub type BlockHash = [u8; 32];

/// Slot number in Subspace network.
pub type SlotNumber = u64;

/// BlockWeight type for fork choice rules.
///
/// The closer solution's tag is to the target, the heavier it is.
pub type BlockWeight = u128;

/// A Ristretto Schnorr public key as bytes produced by `schnorrkel` crate.
#[derive(
    Default,
    Copy,
    Clone,
    PartialEq,
    Eq,
    Ord,
    PartialOrd,
    Hash,
    Encode,
    Decode,
    TypeInfo,
    Deref,
    From,
    Into,
)]
pub struct PublicKey([u8; PublicKey::SIZE]);

impl fmt::Debug for PublicKey {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "{}", hex::encode(self.0))
    }
}

#[cfg(feature = "serde")]
#[derive(Serialize, Deserialize)]
#[serde(transparent)]
struct PublicKeyBinary([u8; PublicKey::SIZE]);

#[cfg(feature = "serde")]
#[derive(Serialize, Deserialize)]
#[serde(transparent)]
struct PublicKeyHex(#[serde(with = "hex")] [u8; PublicKey::SIZE]);

#[cfg(feature = "serde")]
impl Serialize for PublicKey {
    #[inline]
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: Serializer,
    {
        if serializer.is_human_readable() {
            PublicKeyHex(self.0).serialize(serializer)
        } else {
            PublicKeyBinary(self.0).serialize(serializer)
        }
    }
}

#[cfg(feature = "serde")]
impl<'de> Deserialize<'de> for PublicKey {
    #[inline]
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
    where
        D: Deserializer<'de>,
    {
        Ok(Self(if deserializer.is_human_readable() {
            PublicKeyHex::deserialize(deserializer)?.0
        } else {
            PublicKeyBinary::deserialize(deserializer)?.0
        }))
    }
}

impl fmt::Display for PublicKey {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "{}", hex::encode(self.0))
    }
}

impl AsRef<[u8]> for PublicKey {
    #[inline]
    fn as_ref(&self) -> &[u8] {
        &self.0
    }
}

impl PublicKey {
    /// Public key size in bytes
    pub const SIZE: usize = 32;

    /// Public key hash.
    pub fn hash(&self) -> Blake3Hash {
        blake3_hash(&self.0)
    }
}

/// Single BLS12-381 scalar with big-endian representation, not guaranteed to be valid
#[derive(
    Default,
    Copy,
    Clone,
    Eq,
    PartialEq,
    Ord,
    PartialOrd,
    Hash,
    From,
    Into,
    AsRef,
    AsMut,
    Deref,
    DerefMut,
    Encode,
    Decode,
    TypeInfo,
)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(feature = "serde", serde(transparent))]
pub struct ScalarBytes([u8; ScalarBytes::FULL_BYTES]);

impl fmt::Debug for ScalarBytes {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "{}", hex::encode(self.0))
    }
}

impl ScalarBytes {
    /// How many full bytes can be stored in BLS12-381 scalar (for instance before encoding). It is
    /// actually 254 bits, but bits are mut harder to work with and likely not worth it.
    ///
    /// NOTE: After encoding more bytes can be used, so don't rely on this as the max number of
    /// bytes stored within at all times!
    pub const SAFE_BYTES: usize = 31;
    /// How many bytes Scalar contains physically, use [`Self::SAFE_BYTES`] for the amount of data
    /// that you can put into it safely (for instance before encoding).
    pub const FULL_BYTES: usize = 32;
}

#[allow(clippy::assign_op_pattern, clippy::ptr_offset_with_cast)]
mod private_u256 {
    //! This module is needed to scope clippy allows
    use parity_scale_codec::{Decode, Encode};
    use scale_info::TypeInfo;

    uint::construct_uint! {
        #[derive(Encode, Decode, TypeInfo)]
        pub struct U256(4);
    }
}

/// 256-bit unsigned integer
#[derive(
    Debug,
    Display,
    Add,
    Sub,
    Mul,
    Div,
    Rem,
    Copy,
    Clone,
    Ord,
    PartialOrd,
    Eq,
    PartialEq,
    Hash,
    Encode,
    Decode,
    TypeInfo,
)]
pub struct U256(private_u256::U256);

impl U256 {
    /// Zero (additive identity) of this type.
    #[inline]
    pub const fn zero() -> Self {
        Self(private_u256::U256::zero())
    }

    /// One (multiplicative identity) of this type.
    #[inline]
    pub fn one() -> Self {
        Self(private_u256::U256::one())
    }

    /// Create from big endian bytes
    pub fn from_be_bytes(bytes: [u8; 32]) -> Self {
        Self(private_u256::U256::from_big_endian(&bytes))
    }

    /// Convert to big endian bytes
    pub fn to_be_bytes(self) -> [u8; 32] {
        self.0.to_big_endian()
    }

    /// Create from little endian bytes
    pub fn from_le_bytes(bytes: [u8; 32]) -> Self {
        Self(private_u256::U256::from_little_endian(&bytes))
    }

    /// Convert to little endian bytes
    pub fn to_le_bytes(self) -> [u8; 32] {
        self.0.to_little_endian()
    }

    /// Adds two numbers, checking for overflow. If overflow happens, `None` is returned.
    pub fn checked_add(&self, v: &Self) -> Option<Self> {
        self.0.checked_add(v.0).map(Self)
    }

    /// Subtracts two numbers, checking for underflow. If underflow happens, `None` is returned.
    pub fn checked_sub(&self, v: &Self) -> Option<Self> {
        self.0.checked_sub(v.0).map(Self)
    }

    /// Multiplies two numbers, checking for underflow or overflow. If underflow or overflow
    /// happens, `None` is returned.
    pub fn checked_mul(&self, v: &Self) -> Option<Self> {
        self.0.checked_mul(v.0).map(Self)
    }

    /// Divides two numbers, checking for underflow, overflow and division by zero. If any of that
    /// happens, `None` is returned.
    pub fn checked_div(&self, v: &Self) -> Option<Self> {
        self.0.checked_div(v.0).map(Self)
    }

    /// Saturating addition. Computes `self + other`, saturating at the relevant high or low
    /// boundary of the type.
    pub fn saturating_add(&self, v: &Self) -> Self {
        Self(self.0.saturating_add(v.0))
    }

    /// Saturating subtraction. Computes `self - other`, saturating at the relevant high or low
    /// boundary of the type.
    pub fn saturating_sub(&self, v: &Self) -> Self {
        Self(self.0.saturating_sub(v.0))
    }

    /// Saturating multiplication. Computes `self * other`, saturating at the relevant high or low
    /// boundary of the type.
    pub fn saturating_mul(&self, v: &Self) -> Self {
        Self(self.0.saturating_mul(v.0))
    }

    /// The middle of the piece distance field.
    /// The analogue of `0b1000_0000` for `u8`.
    pub const MIDDLE: Self = {
        // TODO: This assumes that numbers are stored little endian,
        //  should be replaced with just `Self::MAX / 2`, but it is not `const fn` in Rust yet.
        Self(private_u256::U256([
            u64::MAX,
            u64::MAX,
            u64::MAX,
            u64::MAX / 2,
        ]))
    };

    /// Maximum value.
    pub const MAX: Self = Self(private_u256::U256::MAX);
}

// Necessary for division derive
impl From<U256> for private_u256::U256 {
    #[inline]
    fn from(number: U256) -> Self {
        number.0
    }
}

impl WrappingAdd for U256 {
    #[inline]
    fn wrapping_add(&self, other: &Self) -> Self {
        Self(self.0.overflowing_add(other.0).0)
    }
}

impl WrappingSub for U256 {
    #[inline]
    fn wrapping_sub(&self, other: &Self) -> Self {
        Self(self.0.overflowing_sub(other.0).0)
    }
}

impl From<u8> for U256 {
    #[inline]
    fn from(number: u8) -> Self {
        Self(number.into())
    }
}

impl From<u16> for U256 {
    #[inline]
    fn from(number: u16) -> Self {
        Self(number.into())
    }
}

impl From<u32> for U256 {
    #[inline]
    fn from(number: u32) -> Self {
        Self(number.into())
    }
}

impl From<u64> for U256 {
    #[inline]
    fn from(number: u64) -> Self {
        Self(number.into())
    }
}

impl From<u128> for U256 {
    #[inline]
    fn from(number: u128) -> Self {
        Self(number.into())
    }
}

impl TryFrom<U256> for u8 {
    type Error = &'static str;

    #[inline]
    fn try_from(value: U256) -> Result<Self, Self::Error> {
        Self::try_from(value.0)
    }
}

impl TryFrom<U256> for u16 {
    type Error = &'static str;

    #[inline]
    fn try_from(value: U256) -> Result<Self, Self::Error> {
        Self::try_from(value.0)
    }
}

impl TryFrom<U256> for u32 {
    type Error = &'static str;

    #[inline]
    fn try_from(value: U256) -> Result<Self, Self::Error> {
        Self::try_from(value.0)
    }
}

impl TryFrom<U256> for u64 {
    type Error = &'static str;

    #[inline]
    fn try_from(value: U256) -> Result<Self, Self::Error> {
        Self::try_from(value.0)
    }
}

impl Default for U256 {
    fn default() -> Self {
        Self::zero()
    }
}